
- •Принципы построения и алгоритмы регулирования управляемых приводов автоматизированных систем.
- •Тиристорные пусковые устройства
- •Основные теоретические положения.
- •1.2. Принцип работы устройства
- •1.3. Функции защиты
- •1.4. Система управления
- •Частотно-регулируемый привод с шим-преобразователем в системах управления асинхронными двигателями
- •1.1 Основные теоретические положения.
- •1.2. Принцип действия
- •1.2.1 Асинхронный электродвигатель
- •1.2.2 Принцип постоянства отношения напряжение/частота (правило Костенко). Математические модели системы управления
- •1.2.3 Принцип обычной широтно-импульсной модуляции
- •1.2.4 Таблицы преобразования со значениями синусов
- •1.2.5. Принцип действия пи-регулятора
- •Управление асинхронным электродвигателем переменного тока по принципу постоянства V/f и векторного шим-управления
- •Основные теоретические положения.
- •1.2. Принцип действия
- •1.2.1 Принцип пространственно-векторной модуляции
- •1. 2.2 Эффективность реализации векторного шим-управления
- •1.2.3 Алгоритм определения сектора
- •Описание аппаратной части (atavrmc200)
- •3.3.2. Описание программы
- •Схемотехнические решения преобразователей в электроприводах постоянного и переменного токов. Транзисторные и тиристорные устройства управления силовой частью электропривода.
- •Схемотехнические решения частотного управления электроприводами
- •Частотно-регулируемый электропривод с адаптивной моделью в системе управления
- •Унифицированные системы электроприводов.
- •Блочно модульные принципы комплектования автоматизированных электроприводов. Электроприводы переменного тока
- •Электроприводы постоянного тока
- •Средства управления и программирования электроприводов.
- •Управление с использованием нечеткой логики
- •Система управления насосом с использованием нечеткой логики
- •Экономия электроэнергии частотно-регулируемыми приводами переменного тока.
- •Экономия энергии на вентиляторах
- •Экономия энергии на насосах. Насосы.
- •Преобразователи переменной скорости
Описание аппаратной части (atavrmc200)
Лабораторный стенд реализован на основе оценочной
платы ATAVRMC200. Данная плата может использоваться в качестве отправной точки для проектирования и проверки устройств управления асинхронными двигателями.
Основные особенности ATAVRMC200:
Микроконтроллер AT90PWM3
Управление асинхронным электродвигателем 110-230В
Интеллектуальный силовой модуль (230В/400Вт)
Интерфейс внутрисистемного программирования эмулятора
Интерфейс RS232
Изолированный ввод-вывод для датчиков
Вход 0-10В для команд и датчика
3.3.2. Описание программы
Все алгоритмы написаны на языке Си, при этом, в качестве инструментальных средств для проектирования использовались IAR Embedded Workbench и AVR Studio. В алгоритме векторного ШИМ-управления используется таблица ближайших значений 127sin(2?k/480) для k= 0...80. Размер этой таблицы (81 байт) является наилучшим соотношением между доступной внутренней памятью и частотой оцифровки скорости вращения ротора. При двунаправленном управлении скоростью при изменении направления вращения на обратное на выходе ПИ-регулятора устанавливается отрицательное значение. В этом случае необходимо поменять местами значения, сохраненные в двух компараторах (см. рисунок 8).
Таблица 4. Перечень файлов, используемых в проекте "Project_Vector" в среде для проектирования IAR
Файл |
Описание |
main_space_vector_PWM.c |
Основной верхний уровень приложения |
space_vector_PWM2.c |
Определение сектора и угла тетта |
controlVF.c |
Вычисление постоянного отношения V/F |
mc_control.c |
Контур управления (ПИ) |
read_acquisitionADC.c |
Возврат результата АЦП |
init.c |
Инициализация ЦПУ (порты ввода-вывода, таймеры) |
psc_initialisation2.c |
Инициализация PSC |
adc.c |
Функции АЦП |
dac.c |
Функции ЦАП |
|
|
На рисунке 9 представлен переходной процесс изменения скорости и статорных напряжений, полученных при управлении микроконтроллером со скачкообразным изменением заданной скорости между значениями +700 и -700 об./мин. Данные экспериментальные результаты были получены при управлении асинхронным двигателем мощностью 750 Вт. Из рисунка следует, что желаемая скорость достигается по завершении переходного процесса длительностью 1.2 секунды, а затем, когда частота статора на выходе ПИ-регулятора приблизится к нулю, амплитуда статорного напряжения будет равна пороговому напряжению. Данный рисунок также демонстрирует, что при использовании векторного ШИМ-управления переходной процесс получается более гладкий, но и более длительный.
Рис. 9. Результаты измерения частоты вращения (об/мин) и фазного напряжения статора (В) при управлении микроконтроллером и скачкообразном изменении заданной частоты вращения.
Лекция 8