Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vyshka.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
571.13 Кб
Скачать

15. Таблица основных производных

16.Производные высших порядков

  Ясно, что производная

функции y =f (x) есть также функция от x:

y' =f ' (x)

.   Если функция f ' (x) дифференцируема, то её производная обозначается символомy'' =f '' (x) и называется второй производной функции f(x) или производной функции f(x) второго порядка. Пользуясь обозначением

можем написать

Пример.    

  Очень удобно пользоваться также обозначением

 ,

указывающим, что функция y=f(x) была продифференцирована по x два раза.   Производная второй производной, т.е. функции y''=f '' (x) , называется третьей производной функции y=f(x) или производной функции f(x) третьего порядка и обозначается символами

.

  Вообще n-я производная или производная n-го порядка функции y=f(x)обозначается символами

17. Определение дифференциала функции

Дифференциалом функции называется линейная относительно   часть приращения функции. Она обозначается как   или  . Таким образом:

18. Дифференциалы высших порядков

Дифференциалом  -го порядка   функции  называется дифференциал от дифференциала  -го порядка этой функции, то есть

19)Теорема Лопита́ля (также правило Бернулли — Лопиталя[1]) — метод нахождения пределов функций, раскрывающий неопределённости вида и . Обосновывающая метод теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.

Теорема Лопиталя:

  1. либо ;

  2. и дифференцируемы в проколотой окрестности ;

  3. в проколотой окрестности ;

  4. существует ,

тогда существует .

Пределы также могут быть односторонними.

Отношение бесконечно малых

Докажем теорему для случая, когда пределы функций равны нулю (то есть неопределённость вида ).

Поскольку мы рассматриваем функции и только в правой проколотой полуокрестности точки , мы можем непрерывным образом их доопределить в этой точке: пусть . Возьмём некоторый из рассматриваемой полуокрестности и применим к отрезку теорему Коши. По этой теореме получим:

,

но , поэтому .

Дальше, записав определение предела отношения производных и обозначив последний через , из полученного равенства выводим:

для конечного предела и

для бесконечного,

что является определением предела отношения функций.

Отношение бесконечно больших

Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен . Тогда, при стремлении к справа, это отношение можно записать как , где  — O(1). Запишем это условие:

.

Зафиксируем из отрезка и применим теорему Коши ко всем из отрезка :

, что можно привести к следующему виду:

.

Для , достаточно близких к , выражение имеет смысл; предел первого множителя правой части равен единице (так как и  — константы, а и стремятся к бесконечности). Значит, этот множитель равен , где  — бесконечно малая функция при стремлении к справа. Выпишем определение этого факта, используя то же значение , что и в определении для :

.

Получили, что отношение функций представимо в виде , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и был меньше , значит, предел отношения функций действительно равен .

Если же предел бесконечен (допустим, он равен плюс бесконечности), то

.

В определении будем брать ; первый множитель правой части будет больше 1/2 при , достаточно близких к , а тогда .

Для других баз доказательства аналогичны приведённым.

Примеры

  • Здесь можно применить правило Лопиталя 3 раза, а можно поступить иначе. Нужно разделить и числитель, и знаменатель на x в наибольшей степени(в нашем случае ). В этом примере получается:

  • ;

  • при .

20)Говорят, что функция имеет максимум в точке , т.е. при , если для всех точек , достаточно близких к точке и отличных от неё.

Говорят, что функция имеет минимум в точке , т.е. при , если для всех точек , достаточно близких к точке и отличных от неё.

Максимум и минимум функции называются экстремумами функции.

Теорема (необходимое условие экстремума функции двух переменных). Если функция достигает экстремума при , то каждая частная производная первого порядка от или обращается в нуль при этих значениях аргументов, или не существует.

Теорема (достаточное условие экстремума функции двух переменных). Пусть в некоторой области, содержащей точку функция имеет непрерывные частные производные до третьего порядка включительно. Пусть, кроме того, точка является критической точкой функции , т.е. , тогда при : 1) имеет максимум, если дискриминант и , где ; 2) имеет минимум, если дискриминант и ; 3) не имеет ни минимума, ни максимума, если дискриминант ; 4) если , то экстремум может быть, а может и не быть (требуется дополнительное исследование).

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]