
- •Вопросы для подготовки к экзамену по курсу "Общая химия"
- •Химия как предмет естествознания.
- •Классы неорганических соединений.
- •Основания.
- •Получение
- •Оксиды Классификация
- •Получение
- •Химические свойства
- •Кислоты.
- •Получение
- •Химические свойства
- •Классификация
- •3. Основные положения атомно-молекулярного учения.
- •Основные законы химии (закон сохранения, постоянства состава, кратных отношений, Авогадро).
- •Закон эквивалентов.
- •Строение атома.
- •Квантовые числа.
- •Принцип Паули.
- •Правило Хунда.
- •Правило Клечковского.
- •11. Периодический закон д.И. Менднлеева.
- •12. Структура периодической системы
- •13. Химическая связь. Виды химических связей. 14.Ионная связь. 15.Ковалентная связь.
- •16. Межмолекулярное взаимодействие
- •17. Комплексные соединения
- •Классификация По заряду комплекса
- •19. Закон Гесса, следствие закона Гесса.
- •20. Скорость гомогенных химических реакций.
- •6.1.1 Зависимость скорости реакции от концентрации веществ
- •6.1.2. Особенности кинетики гетерогенных реакций
- •6.1.3. Зависимость скорости реакции от температуры
- •6.1.4. Уравнение Аррениуса
- •6.1.5. Энергия активации
- •6.1.6. Предэкспоненциальный множитель
- •6.1.7. Зависимость скорости реакции от катализатора
- •6.1.8. Гомогенный катализ
- •6.1.9. Гетерогенный катализ
- •21. Скорость гетерогенных химических реакций.
- •22. Факторы, влияющие на скорость химических реакций.
- •23. Обратные процессы. Химическое равновесие.
- •24. Принцип Ле-Шателье. Влияние параметров реакции на смещение равновесия.
- •27. Растворы неэлектролитов, их общие свойства, способы выражения концентрации.
- •28. Закон Рауля
- •29. Закон Вант-Гоффа.
- •30. Закон генри
- •31. Температура кипения и замерзания растворов.
- •32. Растворы электролитов. Сильные и слабые электролиты.
- •33. Водородный показатель
- •34.Гидролиз солей
- •35. Дисперсные системы и их классификация.
- •36.Строение мицеллы.
- •37. Кристаллическое и аморфное состояние вещества.
- •38. Общие свойства металлов. Стандартный электродный потенциал.
- •39. Методы получения металлов.
- •40. Электролиз. Законы электролиза.
- •41) Гальванические элементы.
- •42) Коррозия металлов.
- •43)Методы защиты от коррозии.
- •44) Сплавы. Основные типы двухкомпонентных диаграмм состония.
- •45) Минеральные вяжущие вещества, их химический состав.
- •46) Классификация органичесих соединений.
- •47. Высокомолекулярные соединения. Процессы полимеризации и поликонденсации.
- •48. Химия s-элемнтов
- •49)Химия р-элементов
- •50)Химия d-элементов
47. Высокомолекулярные соединения. Процессы полимеризации и поликонденсации.
Высокомолекулярными соединениями (полимерами) называются органические вещества, молекулы которых состоят из большого количества повторяющихся звеньев.
Молекулярная масса полимеров обычно очень велика. К полимерам относят - волокна, пластмассы и каучуки. Полимеры бывают природного или искусственного происхождения, например, полиэтилен, полипропилен, синтетические каучуки. Получают полимеры реакциями полимеризации и поликонденсации.
При полимеризации друг с другом соединяются большое количество молекул, образуя одну большую молекулу, причем в реакцию полимеризации могут вступать молекулы разные веществ.
Реакции полимеризации характерны для непредельных соединений. Например, из этилена образуется всеми используемый полиэтилен:
nСН2 = СН2 ® (-CH2-CH2-)n где n - степень полимеризации, т. е. число элементарных звеньев (-СН2-СН2-), повторяющихся в молекуле полиэтилена. В зависимости от этого числа свойства полученного полимера обладают различными свойствами.
Реакция поликонденсации - это процесс образования высокомолекулярных веществ из низкомолекулярных, идущий с выделением побочных продуктов. В отличие от реакции полимеризации этот процесс не может быть отнесен к типу реакций соединения.
Для реакции поликонденсации также необходимо, чтобы молекулы исходного вещества могли реагировать не менее чем с двумя другими молекулами. Но это достигается в данном случае не за счет двойных связей, а благодаря наличию в молекулах не менее двух функциональных групп атомов.
Примером
такой реакции может служить уже известный
процесс образования полипептидов из
аминокислот (см. учебник, стр. 364).
Аминокислоты - соединения,
имеющие
две функциональные группы:
За
счет этих групп молекулы одной и той
же аминокислоты могут многократно
реагировать друг с другом, образуя
более крупные молекулы; при этом
выделяется побочный продукт реакции
- вода:
48. Химия s-элемнтов
Общая характеристика элементов IA и IIA групп
В IA группу входят литий, натрий, калий, рубидий и цезий. Эти элементы называют щелочными элементами. В эту же группу входит искусственно полученный малоизученный радиоактивный (неустойчивый) элемент франций. Иногда в IA группу включают и водород. Таким образом, в эту группу входят элементы каждого из 7 периодов.
Во IIA группу входят бериллий, магний, кальций, стронций, барий и радий. Последние четыре элемента имеют групповое название – щелочноземельные элементы.
В земной коре наиболее распространены четыре из этих тринадцати элементов: Na (w =2,63 %), K (w = 2,41 %), Mg (w = 1,95 %) и Ca (w = 3,38 %). Остальные встречаются значительно реже, а франций вообще не встречается.
Орбитальные
радиусы атомов этих элементов (кроме
водорода) изменяются от 1,04 А (у бериллия)
до 2,52 А (у цезия), то есть у всех атомов
превышают 1 ангстрем. Это приводит к
тому, что все эти элементы представляют
собой элементы, образующие истинные
металлы, а бериллий – элемент, образующий
амфотерный металл. Общая валентная
электронная формула элементов IA группы
– ns1, а элементов IIА группы –
ns2.
Большие размеры атомов и незначительное число валентных электронов приводят к тому, что атомы этих элементов (кроме бериллия) склонны отдавать свои валентные электроны. Наиболее легко отдают свои валентные электроны атомы элементов IА группы, при этом из атомов щелочных элементов образуются однозарядные катионы, а из атомов щелочноземельных элементов и магния – двухзарядные катионы. Степени окисления в соединениях у щелочных элементов равна +1, а у элементов IIA группы – +2.
Простые вещества, образуемые атомами этих элементов, – металлы. Литий, натрий, калий, рубидий, цезий и франций называют щелочными металлами, так как их гидроксиды представляют собой щелочи. Кальций, стронций и барий называют щелочноземельными металлами. Химическая активность этих веществ увеличивается по мере увеличения атомного радиуса.
Из химических свойств этих металлов наиболее важны их восстановительные свойства. Щелочные металлы – сильнейшие восстановители. Металлы элементов IIA группы также довольно сильные восстановители.
(**)