
- •Вопросы для подготовки к экзамену по курсу "Общая химия"
- •Химия как предмет естествознания.
- •Классы неорганических соединений.
- •Основания.
- •Получение
- •Оксиды Классификация
- •Получение
- •Химические свойства
- •Кислоты.
- •Получение
- •Химические свойства
- •Классификация
- •3. Основные положения атомно-молекулярного учения.
- •Основные законы химии (закон сохранения, постоянства состава, кратных отношений, Авогадро).
- •Закон эквивалентов.
- •Строение атома.
- •Квантовые числа.
- •Принцип Паули.
- •Правило Хунда.
- •Правило Клечковского.
- •11. Периодический закон д.И. Менднлеева.
- •12. Структура периодической системы
- •13. Химическая связь. Виды химических связей. 14.Ионная связь. 15.Ковалентная связь.
- •16. Межмолекулярное взаимодействие
- •17. Комплексные соединения
- •Классификация По заряду комплекса
- •19. Закон Гесса, следствие закона Гесса.
- •20. Скорость гомогенных химических реакций.
- •6.1.1 Зависимость скорости реакции от концентрации веществ
- •6.1.2. Особенности кинетики гетерогенных реакций
- •6.1.3. Зависимость скорости реакции от температуры
- •6.1.4. Уравнение Аррениуса
- •6.1.5. Энергия активации
- •6.1.6. Предэкспоненциальный множитель
- •6.1.7. Зависимость скорости реакции от катализатора
- •6.1.8. Гомогенный катализ
- •6.1.9. Гетерогенный катализ
- •21. Скорость гетерогенных химических реакций.
- •22. Факторы, влияющие на скорость химических реакций.
- •23. Обратные процессы. Химическое равновесие.
- •24. Принцип Ле-Шателье. Влияние параметров реакции на смещение равновесия.
- •27. Растворы неэлектролитов, их общие свойства, способы выражения концентрации.
- •28. Закон Рауля
- •29. Закон Вант-Гоффа.
- •30. Закон генри
- •31. Температура кипения и замерзания растворов.
- •32. Растворы электролитов. Сильные и слабые электролиты.
- •33. Водородный показатель
- •34.Гидролиз солей
- •35. Дисперсные системы и их классификация.
- •36.Строение мицеллы.
- •37. Кристаллическое и аморфное состояние вещества.
- •38. Общие свойства металлов. Стандартный электродный потенциал.
- •39. Методы получения металлов.
- •40. Электролиз. Законы электролиза.
- •41) Гальванические элементы.
- •42) Коррозия металлов.
- •43)Методы защиты от коррозии.
- •44) Сплавы. Основные типы двухкомпонентных диаграмм состония.
- •45) Минеральные вяжущие вещества, их химический состав.
- •46) Классификация органичесих соединений.
- •47. Высокомолекулярные соединения. Процессы полимеризации и поликонденсации.
- •48. Химия s-элемнтов
- •49)Химия р-элементов
- •50)Химия d-элементов
24. Принцип Ле-Шателье. Влияние параметров реакции на смещение равновесия.
Если система находится в состоянии равновесия, то она будет пребывать в нем до тех пор, пока внешние условия сохраняются постоянными. Если же условия изменятся, то система выйдет из равновесия — скорости прямого и обратного процессов изменятся неодинаково — будет протекать реакция. Наибольшее значение имеют случаи нарушения равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в равновесии, давления или температуры
Рассмотрим каждый из этих случаев.
Нарушение равновесия вследствие изменения концентрации какого-либо из веществ, участвующих реакций
Процесс изменения концентраций, вызванный нарушением равновесия, называется смещением или сдвигом равновесия. Если при этом происходит увеличение концентраций веществ, роящ их в правой части уравнения (и, конечно, одновременно уменьшение концентраций веществ, стоящих слева), то говорят, что равновесие мещается вправо, т. е. в направлении течения прямой реакции; при обратном изменении концентраций говорят о смещении равновесия влево — в направлении обратной реакции.
При увеличении концентрации какого-либо из веществ, участвующих в равновесии, равновесие смещается в сторону расхода этого вещества; при уменьшении концентрации какого-либо из веществ равновесие смещается в сторону образования этого вещества
Нарушение равновесия вследствие изменения давления (путем уменьшения или увеличения объема системы). Когда в реакции участвуют газы, равновесие может нарушиться при изменении объема системы
При увеличении давления путем сжатия системы равновесие сдвигается в сторону уменьшения числа молекул газов, т. е. в сторону понижения давления-, при уменьшении давления равновесие сдвигается в сторону возрастания числа молекул газов, т. е. в сторону увеличения давления.В том случае, когда реакция протекает без изменения числа молекул газов, равновесие не нарушается при сжатии или при расширении системы.
Нарушение равновесия вследствие изменения температуры.
Равновесие подавляющего большинства химических реакций сдвигается при изменении температуры. Фактором, который определяет направление смещения равновесия, является при этом знак теплового эффекта реакции. Можно показать, что при повышении температуры равновесие смещается в направлении эндотермической, а при понижении в направлении экзотермической реакции
Закономерности, которые проявляются в рассмотренных примерах нарушения химического равновесия, представляют собою частные случаи общего принципа, определяющего влияние различных факторов на равновесные системы. Этот принцип, известный под названием принципа Ле Шателье, в применении к хи^ мическим равновесиям можно сформулировать так:
Если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.
25 –26 Гомогенный катализ, гетерогенный катализ.
Вещества, не расходующиеся в результате протекания реакции, но влияющие на ее скорость, называются ктализаторами. Явление изменения скорости реакции под действием таких веществ называется катализом. Реакции, протекающие под действием катализаторов, называются каталитическими.
Различают гомогенный и гетерогенный катализ.
В случае гомогенного катализа катализатор и реагирующие вещества образуют одну фазу (газ или раствор). В случае гетерогенного катализа катализатор находится в системе в виде самостоятельной фазы. Примером гомогенного катализа может служить каталитическое разложение пероксида водорода в водном растворе на воду и кислород. Ионы, катализирующие разложение пероксида водорода, образуют с ним промежуточные соединения, которые далее распадаются с выделением кислорода. Широкое применение в химической промышленности находит гетерогенный катализ. Большая часть продукции, вырабатываемой в настоящее время этой промышленностью, получается с помощью гетерогенного катализа. При гетерогенном катализе реакция протекает на поверхности катализатора. Отсюда следует, что активность катализатора зависит от величины и свойств его поверхности. Для того чтобы иметь большую («развитую») поверхность, катализатор должен обладать пористой структурой или находиться в сильно раздробленном (выокодисперсном) состоянии. При практическом применении катализатор обычно наносят на носитель, имеющий пористую структуру (пемза, асбест и др.)
Как и в случае гомогенного катализа, при гетерогенном катализе реакция протекает через активные промежуточные соединения. Но здесь эти соединения представляют собой поверхностные соединения катализатора с реагирующими веществами. Проходя через ряд стадий, в которых участвуют эти промежуточные соединения, реакция заканчивается образованием конечных продуктов, а катализатор в результате не расходуется.В качестве примеров гетерогенно-каталитических реакций можно указать на окисление диоксида серы в триоксид при контактном методе производства серной кислоты, синтез аммиака, окисление аммиака при производстве азотной кислоты. уру (пемза, асбест и др.).Как и в случае гомогенного катализа, при гетерогенном катализе реакция протекает через активные промежуточные соединения. Но здесь эти соединения представляют собой поверхностные соединения катализатора с реагирующими веществами. Проходя через ряд стадий, в которых участвуют эти промежуточные соединения, реакция заканчивается образованием конечных продуктов, а катализатор в результате не расходуется.В качестве примеров гетерогенно-каталитических реакций можно указать на окисление диоксида серы в триоксид при контактном методе производства серной кислоты, синтез аммиака, окисление аммиака при производстве азотной кислоты.