- •Вопросы для подготовки к экзамену по курсу "Общая химия"
- •Химия как предмет естествознания.
- •Классы неорганических соединений.
- •Основания.
- •Получение
- •Оксиды Классификация
- •Получение
- •Химические свойства
- •Кислоты.
- •Получение
- •Химические свойства
- •Классификация
- •3. Основные положения атомно-молекулярного учения.
- •Основные законы химии (закон сохранения, постоянства состава, кратных отношений, Авогадро).
- •Закон эквивалентов.
- •Строение атома.
- •Квантовые числа.
- •Принцип Паули.
- •Правило Хунда.
- •Правило Клечковского.
- •11. Периодический закон д.И. Менднлеева.
- •12. Структура периодической системы
- •13. Химическая связь. Виды химических связей. 14.Ионная связь. 15.Ковалентная связь.
- •16. Межмолекулярное взаимодействие
- •17. Комплексные соединения
- •Классификация По заряду комплекса
- •19. Закон Гесса, следствие закона Гесса.
- •20. Скорость гомогенных химических реакций.
- •6.1.1 Зависимость скорости реакции от концентрации веществ
- •6.1.2. Особенности кинетики гетерогенных реакций
- •6.1.3. Зависимость скорости реакции от температуры
- •6.1.4. Уравнение Аррениуса
- •6.1.5. Энергия активации
- •6.1.6. Предэкспоненциальный множитель
- •6.1.7. Зависимость скорости реакции от катализатора
- •6.1.8. Гомогенный катализ
- •6.1.9. Гетерогенный катализ
- •21. Скорость гетерогенных химических реакций.
- •22. Факторы, влияющие на скорость химических реакций.
- •23. Обратные процессы. Химическое равновесие.
- •24. Принцип Ле-Шателье. Влияние параметров реакции на смещение равновесия.
- •27. Растворы неэлектролитов, их общие свойства, способы выражения концентрации.
- •28. Закон Рауля
- •29. Закон Вант-Гоффа.
- •30. Закон генри
- •31. Температура кипения и замерзания растворов.
- •32. Растворы электролитов. Сильные и слабые электролиты.
- •33. Водородный показатель
- •34.Гидролиз солей
- •35. Дисперсные системы и их классификация.
- •36.Строение мицеллы.
- •37. Кристаллическое и аморфное состояние вещества.
- •38. Общие свойства металлов. Стандартный электродный потенциал.
- •39. Методы получения металлов.
- •40. Электролиз. Законы электролиза.
- •41) Гальванические элементы.
- •42) Коррозия металлов.
- •43)Методы защиты от коррозии.
- •44) Сплавы. Основные типы двухкомпонентных диаграмм состония.
- •45) Минеральные вяжущие вещества, их химический состав.
- •46) Классификация органичесих соединений.
- •47. Высокомолекулярные соединения. Процессы полимеризации и поликонденсации.
- •48. Химия s-элемнтов
- •49)Химия р-элементов
- •50)Химия d-элементов
6.1.9. Гетерогенный катализ
Если катализаторы и реагенты находятся в разных фазах и имеют границу раздела, то катализ называется гетерогенным. Катализатор является твердым веществом, а реагирующие вещества – газы или жидкости. Реагирующие молекулы адсорбируются на поверхности катализатора, и за счет ориентации определенным образом и ослабления внутримолекулярных связей снижается энергия активации и увеличивается скорость реакции.
Пусть в отсутствии катализатора протекает реакция
А + В = АВ* = Продукты,
а в присутствии катализатора скорость ее возрастает, но продукты остаются теми же. Если считать, что активное адсорбционное состояние аналогично активированному комплексу АВ некаталитической реакции, то весь процесс можно изобразить следующим образом.
1. Адсорбция исходных веществ на поверхность катализатора:
А + В + Кт = АВКт
Как правило, этот процесс экзотермический.
2. Перевод адсорбированного состояния в активное:
АВКт = АВКт*
Этот процесс требует затраты энергии, называемой истинной энергией активации.
3. Реакция в адсорбированном состоянии с образованием адсорбированных конечных продуктов:
АВКт* = Продукты Кт
4. Десорбция продуктов реакции, приводящая к регенерации катализатора:
Продукты Кт = Продукты + Кт
Таким образом, и в гетерогенном катализе ускоряющее действие катализатора, так же как и в гомогенном катализе, связано с тем, что реагирующие вещества образуют промежуточные соединения, что приводит к снижению энергии активации.
21. Скорость гетерогенных химических реакций.
Рассматривая гетерогенные реакции, нетрудно заметить, что они тесно связаны с процессами переноса вещества. В самом деле, для того, чтобы реакция, например, горения угля могла протекать, необходимо, чтобы диоксид углерода, образующийся при этой реакции, все время удалялся бы от поверхности угля, а новые количества кислорода подходили бы к ней. Оба процесса (отвод С 0 2 от поверхности угля и подвод Ог к ней) осуществляются путем конвекции (перемещения массы газа или жидкости) и диффузии
В ходе гетерогенной реакции можно выделить по меньшей мере три стадии:
1. Подвод реагирующего вещества к поверхности;
2. Химическая реакция на поверхности;
3. Отвод продукта реакции от поверхности
При установившемся режиме реакции все три стадии ее протекают с равными скоростями. При этом во многих случаях энергия активации реакции невелика, и вторая стадия (собственно химическая реакция) могла бы протекать очень быстро, если бы подвод реагирующего вещества к поверхности и отвод продукта от нее тоже происходили бы достаточно быстро. Следовательно, скорость таких реакций определяется скоростью переноса вещества. Можно ожидать, что при усилении конвекции скорость будет возрастать.
Так, реакция горения угля С+О2=СО2 химическая стадия которой требует небольшой энергии активации, протекает тем быстрее, чем интенсивнее подается к углю кислород (или воздух).
Однако не во всех случаях скорость гетерогенной реакции определяется скоростью переноса вещества. Определяющей стадией реакций, энергия активации которых велика, является вторая стадия — собственно химическая реакция. Естественно, что скорость протекания таких реакций не будет возрастать при усилении перемешивания. Например, реакция окисления железа кислородом влажного воздуха не ускоряется при увеличении подачи воздуха к поверхности металла, поскольку здесь энергия активации химической стадии процесса значительна.Стадия, определяющая скорость протекания реакции, называется лимитирующей стадией. В первом примере лимитирующей стадией является перенос вещества, во втором — собственно химическая реакция.
