- •1.Коньюнкция условий и разбиение пространства входа.
- •Композиция нечетких отношений.
- •Нечеткое инверсное управление и нечеткая система управления с внутренней моделью
- •Алгоритм жесткой кластеризации.
- •Операции над нечеткими множествами. Модификаторы.
- •8. Проектирование нечетких контроллеров (метод Мамдани)
- •2. Нечеткий контроллер с двумя входами и одним выходом
- •9.Нечеткая система управления с плановым изменением коэффициента.
- •10. Оценка параметров заключений по (мнк)
- •11. Адаптивные нейронные нечеткие системы инференции (anfis)
- •12.Импликация Мамдани. Внешнее произведение.Таблица импликаци
- •13. Нечеткая идентификация. Структура и параметры.
- •14. Нечеткий логический вывод для нескольких правил и нескольких входов.
- •Несколько входов (многомерная лингвистическая модель)
- •16. Функциональная схема нечеткого контроллера
- •17. Отношения между нечеткими множествами
- •18. Алгоритм нечеткой кластеризации с-средних
- •19. Моделирование статических объектов упр-я как аппроксимация функций с помощью нейронных сетей (есть только для динамических объектов)((((((((
- •20. Анализ устойчивости тс модели объекта управления в пространстве состояний.
- •22. Нечеткий логический вывод с исп-м отношений. Пример
- •24. Визуализация алгоритма нечеткого логического вывода.
- •25. Понятия о нечетких множествах
- •26. Обучение нейронной сети. Общие сведения.
- •27. Упрощение алгоритма нечеткого логического вывода.
- •28. Обратное распространение ошибки
- •29. Визуализация нечеткого логического вывода.Аккумуляция.
- •30. Параметры алгоритма с-средних
- •31. Проектирование нечетких контроллеров (метод Мамдани)
- •32. Нечеткая логика. Логические связки.
- •33.Проектирование нечетких контроллеров(метод Мамдани). Многомерный нечеткий контроллер.
- •34. Алгоритм обучения anfis
- •35. Максиминная композиция нечетких отношений. Внутренне произведение. Пример.
- •36. Преобразование вход-выход. Кривая управления. Пов-ть управления.
- •37. Табличное изменение коэффициента усиления (супервизорное управление)
- •38. Алгоритм нечеткой кластеризации Густафсона–Кесселя.
- •39. Генетические алгоритмы
- •40. Извлечение правил с помощью кластеризации
- •41.Нечеткий сумматор для контроллеров с 2 входами и 1 выходом
- •42. Нейросетевое прямое и косвенное адаптивное управление с эталонной моделью
- •43. Обратное распространение ошибки. Обновление весовых коэф-в скрытых слоев. Локальные градиенты.
- •44. Модель Такаги-Сугено как квазилинейное устройство
- •45. Контроллер типа Такаги-Сугено
- •46. Нейросетевое управление с адаптивной линеаризацией обратной связью
- •48. Такаги-Сугено модель оу в пространстве состояний
- •49. Нечеткие множества. Синглтоны и лингвистические переменные.
- •50. Моделирование нелинейных динамических оу с помощью нейронных сетей
- •51. Структура интеллектуальной системы управления
- •52. Многослойная нейронная сеть
- •53. Дефаззификация. Методы дефаззификации.
- •54. Нейронная сеть с радиальными базисными функциями
- •56. Синтез нечеткой обратной связи
- •57. Линейные матричные неравенства, основные понятия.
- •58. Аппроксимация функций (моделирование) с помощью нейронных сетей (персептронов)
- •59. Классификация генетических нечетких систем
- •60. Синтез нейронных нечетких сетей. Структура anfis
- •19. Моделирование статических объектов управления как аппроксимация функций с помощью нейронных сетей.
- •Адаптивные нейронные нечеткие системы интерференции (anfis). . Синтез нечетких нейронных сетей
- •5.1. Введение
- •Адаптивные нейронечеткие системы инференции (anfis)
- •Импликация Мамдани. Внешнее произведение. Таблица импликации.
- •Нечеткая идентификация. Структура и параметры
- •Нечеткий логический вывод для нескольких правил и нескольких входов.
- •1. Настройка пид-регулятора
- •3. Перенос параметров пид-регулятора в нечеткий контроллер
- •Анализ устойчивости тс модели объекта управления в пространстве состояний. Анализ устойчивости тс модели объекта
- •1. Настройка пид-регулятора
- •Нечеткий логический вывод (инференция). Пример.
- •Визуализация нечеткого логического вывода. Агрегирование условий и активизация заключений.
- •Математическая модель нейрона. Математическая модель нейрона
- •Нечеткое управление с предсказанием.
- •Визуализация нечеткого логического вывода. Аккумуляция заключений.
- •5.1. Введение
- •Алгоритм обучения anfis
- •Максиминная композиция нечетких отношений. Внутреннее произведение. Пример.
- •Преобразование вход-выход для нечетких контроллеров. Кривая управления и поверхность управления.
- •2.4. Преобразование вход-выход
- •Табличное изменениекоэффициентаусиления (супервизорное управление).
- •2.8. Табличное изменение коэффициента усиления (супервизорное управление)
- •Алгоритм нечеткой кластеризации Густафсона-Кесселя.
- •Генетические алгоритмы. Генетические алгоритмы
- •Модель Такаги-Сугено как квазилинейное (аффинное) устройство. Модель Такаги-Сугено как квазилинейное устройство
- •Контроллер типа Такаги-Сугено.
- •Деффазификация. Методы деффазификации.
- •2.2.5. Дефаззификация
- •Теорема б универсальной аппроксимации.
- •Такаги-Сугено модель объекта управления в пространстве состояний.
- •Табличный контроллер. Билинейная интерполяция.
- •2.3. Табличный контроллер
- •Моделирование нелинейных динамических объектов управления с помощью нейронных сетей.
- •Моделирование нелинейных динамических процессов (объектов)
- •Упрощение алгоритма нечеткого логического вывода.
- •Обратное распространение ошибки. Обновление весовых коэффициентов выходного слоя.
- •4.6. Обратное распространение ошибки
- •Структура интеллектуальной системы управления.
- •Многослойная нейронная сеть. Многослойная нейронная сеть
- •5.1. Введение
- •Структура anfis
10. Оценка параметров заключений по (мнк)
Пусть известны правила и параметры функций принадлежности антецедентов. В этом случае остается лишь оценить параметры заключений (консеквентов), чтобы завершить построение модели ОУ.
Заметим, что формулы дефаззификации для синглтонных и ТС моделей являются линейными относительно параметров консеквентов (заключений) ai, bi, что вытекает из вышеприведенных формул
(1)
где последняя формула соответствует
модели ТС r-го порядка.
При этом
так
что
Как видим, формулы для выхода синглтонных
и ТС моделей оказываются линейными по
параметрам
и
.
Отсюда эти параметры при заданных
правилах и параметрах функций
принадлежности антецедентов, другими
словами, при известных степенях истинности
правил
,
могут быть найдены из доступных данных
с помощью метода наименьших квадратов
(МНК).Вводя нормализованную
степень истинности l-го
правила
получаем ТС модель как квазилинейную
(аффинную) модель r-го
порядка следующего вида
В векторной форме последнее выражение
можно представить как произведение
векторов [.] и
:
.
При этом искомые параметры заключений
и
для
объединены в один вектор-столбец
параметров с размерностью
:
При известных данных X и y уравнение (1) теперь можно записать в матричной форме,
или
в виде
,
где
- ошибка аппроксимации. Хорошо известно,
что эта система уравнений может быть
решена относительно вектора параметров
как
.
(3). Это оптимальное
решение по методу МНК, которое дает
минимальную ошибку и как таковое
применимо для моделей предсказания. В
то же самое время, опуская
для всех
,
из уравнений (1) и (2) получаем
формулы, применимые для синглтонных
моделей.
11. Адаптивные нейронные нечеткие системы инференции (anfis)
Рассмотрим нечеткие нейронные сети, которые в англоязычной литературе получили название ANFIS (Adaptive Neuro-Fuzzy Inference System). ANFIS имеет структуру, которая по своим функциям эквивалентна нечеткой системе логического вывода, построенной с помощью нечетких базовых правил типа Такаги - Сугено. Грубо говоря, ANFIS является методом для настройки сформулированных базовых правил, точнее параметров соответствующих этим правилам функций принадлежности, с помощью алгоритмов обучения, основанных на комплекте обучающих (образцовых) данных. Такие алгоритмы позволяют адаптировать (приспосабливать) базовые правила к обучающим данным.
Структура ANFIS
Предположим без потери общности, что имеется два входа u1 и u2, и один выход y. Предположим также, что используется набор базовых правил типа Такаги-Сугено первого порядка, состоящий из двух правил: Если u1 есть A1 и u2 есть B1 , то y1=c11 u1 + c12 u2+c10 ,(1)
Если u1 есть A2 и u2 есть B2 , то y2=c21 u1 + c22 u2+c20 . (2)
М
ежду
прочим, нечеткий контроллер с такими
правилами может осуществлять интерполяцию
выходов двух линейных контроллеров.
Если степень истинности (возбуждающая
сила) правил равна
и
соответственно для конкретных значений
входов u1 и
u2, то выход
вычисляется как средневзвешенное
значение
(3)
Соответствующая нечеткая нейронная сеть показана на рис. 1. Дадим описание слоев в этой сети.
1. Каждый нейрон в слое с номером 1 является
адаптируемым с параметрической
активационной функцией, роль которой
выполняет соответствующая функция
принадлежности
.
Выход этого нейрона представляет собой
степень, с которой данный вход удовлетворяет
функции принадлежности, т. е.
или
.
Примером функции принадлежности является
колоколообразная функция
, (4) где {a, b,
c} есть множество
параметров. При изменении значений этих
параметров изменяется форма колоколообразной
функции принадлежности. Параметры
этого слоя называют параметрами
предпосылок (условий).
Каждый узел в слое 2 является фиксированным узлом, выход которого равен произведению всех поступающих на него сигналов. В общем случае, может быть использована любая другая нечеткая операция И, например, минимум. Выход каждого узла представляет собой степень истинности i-го правила
Каждый узел в слое 3 является фиксированным узлом, который вычисляет отношение степени истинности i-го правила и суммы степеней истинности всех правил
i=1,2 (5) Таким путем
осуществляется нормализация степени
истинности.
Каждый узел в слое 4 является адаптивным слоем с выходным сигналом
,
i=1,2 , где
есть нормализованная степень истинности,
получаемая с выхода слоя 3 и {
,
,
}
есть множество параметров этого узла.
Параметры этого слоя называются
параметрами заключения.Каждый узел в слое 5 есть фиксированный узел, который суммирует все поступающие на него сигналы.
Легко обобщить структурную схему ANFIS, представленную на рис. 1, на базу правил, состоящую из более, чем двух правил.
