Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры_ИСУ (2).doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
6.53 Mб
Скачать

5.1. Введение

Различные типы интеллектуальных систем имеет свои осо­бенности, например, по возможностям обучения, обобщения и вы­работки результатов, что делает их наиболее пригодными для ре­шения одних классов задач и менее пригодными для других.

Например, нейронные сети хороши для задач идентификации объектов, но весьма неудобны для объяснения, как они такую идентификацию осуществляют. Они могут автоматически приобре­тать знания, но процесс их обучения зачастую происходит доста­точно медленно, а анализ обученной сети весьма сложен (обучен­ная сеть представляет обычно черный ящик для пользователя). При этом какую-либо априорную информацию (знания эксперта) для ускорения процесса ее обучения в нейронную сеть ввести не­возможно.

Системы с нечеткой логикой, напротив, хороши для объяс­нения получаемых с их помощью выводов, но они не могут авто­матически приобретать знания для использования их в меха­низмах вывода. Необходимость разбиения универсальных мно­жеств (универсумов) на отдельные области, как правило, ограничивает количест­во входных переменных в таких системах небольшим значением.

Вообще говоря, теоретически, системы с нечеткой логикой и искусственные нейронные сети подобны друг другу, однако, в со­ответствии с изложенным выше, на практике у них имеются свои собственные достоинства и недостатки. Данное соображение лег­ло в основу создания аппарата нечетких нейронных сетей, в кото­рых выводы делаются на основе аппарата нечеткой логики, но соответствующие функции принадлежности подстраиваются с ис­пользованием алгоритмов обучения нейронных сетей, например, алгоритма обратного распространения ошибки. Такие системы не только используют априорную информацию, но могут приобретать новые знания, являясь логически прозрачными.

    1. Структура anfis

Предположим без потери общности, что имеется два входа u1 и u2, и один выход y. Предположим также, что используется набор базовых правил типа Сугено первого порядка, состоящий из двух правил

Если u1 есть A1 и u2 есть B1 то y1=c11 u1 + c12 u2+c10 (1)

Если u1 есть A2 и u2 есть B2 то y2=c21 u1 + c22 u2+c20 (2)

Между прочим, нечеткий контроллер с такими правилами может осуществлять интерполяцию выходов двух линейных контроллеров. Если степень истинности (возбуждающая сила) правил равна и соответственно для конкретных значений входов u1 и u2, то выход вычисляется как средневзвешенное среднее

(3)

Соответствующая нечеткая нейросеть показана на рис. 1.

Рис.1

Дадим описание слоев в этой сети.

  1. Каждый нейрон в слое с номером 1 является адаптируемым с параметрической активационной функцией. Выход этого нейрона представляет собой степень, с которой данный вход удовлетворяет функции принадлежности, т. е. или . Примером функции принадлежности является колоколообразная функция

(4)

где {a, b, c} есть множество параметров. При изменении значений этих параметров изменяется форма колоколообразной функции принадлежности. Параметры этого слоя называют параметрами предпосылок (условий).

  1. Каждый узел в слое 2 является фиксированным узлом, выход которого равен произведению всех поступающих на него сигналов. В общем случае, может быть использована любая другая нечеткая операция И, например, логическое произведение. Выход каждого узла представляет собой степень истинности i-го правила.

  2. Каждый узел в слое 3 является фиксированным узлом, который вычисляет отношение степени истинности i-го правила и суммы степеней истинности всех правил

i=1,2 (5)

Таким путем осуществляется нормализация степени истинности.

  1. Каждый узел в слое 4 является адаптивным слоем с выходным сигналом

i=1,2 (6)

где есть нормализованная степень истинности, получаемая с выхода слоя 3 и { , , } есть множество параметров этого узла. Параметры этого слоя называются параметрами заключения.

  1. Каждый узел в слое 5 есть фиксированный узел, который суммирует все поступающие на него сигналы.

Легко обобщить структурную схему ANFIS, представленную на рис. 1, на базу правил, состоящую из более, чем двух правил.