
- •1.Коньюнкция условий и разбиение пространства входа.
- •Композиция нечетких отношений.
- •Нечеткое инверсное управление и нечеткая система управления с внутренней моделью
- •Алгоритм жесткой кластеризации.
- •Операции над нечеткими множествами. Модификаторы.
- •8. Проектирование нечетких контроллеров (метод Мамдани)
- •2. Нечеткий контроллер с двумя входами и одним выходом
- •9.Нечеткая система управления с плановым изменением коэффициента.
- •10. Оценка параметров заключений по (мнк)
- •11. Адаптивные нейронные нечеткие системы инференции (anfis)
- •12.Импликация Мамдани. Внешнее произведение.Таблица импликаци
- •13. Нечеткая идентификация. Структура и параметры.
- •14. Нечеткий логический вывод для нескольких правил и нескольких входов.
- •Несколько входов (многомерная лингвистическая модель)
- •16. Функциональная схема нечеткого контроллера
- •17. Отношения между нечеткими множествами
- •18. Алгоритм нечеткой кластеризации с-средних
- •19. Моделирование статических объектов упр-я как аппроксимация функций с помощью нейронных сетей (есть только для динамических объектов)((((((((
- •20. Анализ устойчивости тс модели объекта управления в пространстве состояний.
- •22. Нечеткий логический вывод с исп-м отношений. Пример
- •24. Визуализация алгоритма нечеткого логического вывода.
- •25. Понятия о нечетких множествах
- •26. Обучение нейронной сети. Общие сведения.
- •27. Упрощение алгоритма нечеткого логического вывода.
- •28. Обратное распространение ошибки
- •29. Визуализация нечеткого логического вывода.Аккумуляция.
- •30. Параметры алгоритма с-средних
- •31. Проектирование нечетких контроллеров (метод Мамдани)
- •32. Нечеткая логика. Логические связки.
- •33.Проектирование нечетких контроллеров(метод Мамдани). Многомерный нечеткий контроллер.
- •34. Алгоритм обучения anfis
- •35. Максиминная композиция нечетких отношений. Внутренне произведение. Пример.
- •36. Преобразование вход-выход. Кривая управления. Пов-ть управления.
- •37. Табличное изменение коэффициента усиления (супервизорное управление)
- •38. Алгоритм нечеткой кластеризации Густафсона–Кесселя.
- •39. Генетические алгоритмы
- •40. Извлечение правил с помощью кластеризации
- •41.Нечеткий сумматор для контроллеров с 2 входами и 1 выходом
- •42. Нейросетевое прямое и косвенное адаптивное управление с эталонной моделью
- •43. Обратное распространение ошибки. Обновление весовых коэф-в скрытых слоев. Локальные градиенты.
- •44. Модель Такаги-Сугено как квазилинейное устройство
- •45. Контроллер типа Такаги-Сугено
- •46. Нейросетевое управление с адаптивной линеаризацией обратной связью
- •48. Такаги-Сугено модель оу в пространстве состояний
- •49. Нечеткие множества. Синглтоны и лингвистические переменные.
- •50. Моделирование нелинейных динамических оу с помощью нейронных сетей
- •51. Структура интеллектуальной системы управления
- •52. Многослойная нейронная сеть
- •53. Дефаззификация. Методы дефаззификации.
- •54. Нейронная сеть с радиальными базисными функциями
- •56. Синтез нечеткой обратной связи
- •57. Линейные матричные неравенства, основные понятия.
- •58. Аппроксимация функций (моделирование) с помощью нейронных сетей (персептронов)
- •59. Классификация генетических нечетких систем
- •60. Синтез нейронных нечетких сетей. Структура anfis
- •19. Моделирование статических объектов управления как аппроксимация функций с помощью нейронных сетей.
- •Адаптивные нейронные нечеткие системы интерференции (anfis). . Синтез нечетких нейронных сетей
- •5.1. Введение
- •Адаптивные нейронечеткие системы инференции (anfis)
- •Импликация Мамдани. Внешнее произведение. Таблица импликации.
- •Нечеткая идентификация. Структура и параметры
- •Нечеткий логический вывод для нескольких правил и нескольких входов.
- •1. Настройка пид-регулятора
- •3. Перенос параметров пид-регулятора в нечеткий контроллер
- •Анализ устойчивости тс модели объекта управления в пространстве состояний. Анализ устойчивости тс модели объекта
- •1. Настройка пид-регулятора
- •Нечеткий логический вывод (инференция). Пример.
- •Визуализация нечеткого логического вывода. Агрегирование условий и активизация заключений.
- •Математическая модель нейрона. Математическая модель нейрона
- •Нечеткое управление с предсказанием.
- •Визуализация нечеткого логического вывода. Аккумуляция заключений.
- •5.1. Введение
- •Алгоритм обучения anfis
- •Максиминная композиция нечетких отношений. Внутреннее произведение. Пример.
- •Преобразование вход-выход для нечетких контроллеров. Кривая управления и поверхность управления.
- •2.4. Преобразование вход-выход
- •Табличное изменениекоэффициентаусиления (супервизорное управление).
- •2.8. Табличное изменение коэффициента усиления (супервизорное управление)
- •Алгоритм нечеткой кластеризации Густафсона-Кесселя.
- •Генетические алгоритмы. Генетические алгоритмы
- •Модель Такаги-Сугено как квазилинейное (аффинное) устройство. Модель Такаги-Сугено как квазилинейное устройство
- •Контроллер типа Такаги-Сугено.
- •Деффазификация. Методы деффазификации.
- •2.2.5. Дефаззификация
- •Теорема б универсальной аппроксимации.
- •Такаги-Сугено модель объекта управления в пространстве состояний.
- •Табличный контроллер. Билинейная интерполяция.
- •2.3. Табличный контроллер
- •Моделирование нелинейных динамических объектов управления с помощью нейронных сетей.
- •Моделирование нелинейных динамических процессов (объектов)
- •Упрощение алгоритма нечеткого логического вывода.
- •Обратное распространение ошибки. Обновление весовых коэффициентов выходного слоя.
- •4.6. Обратное распространение ошибки
- •Структура интеллектуальной системы управления.
- •Многослойная нейронная сеть. Многослойная нейронная сеть
- •5.1. Введение
- •Структура anfis
Деффазификация. Методы деффазификации.
2.2.5. Дефаззификация
Результирующее нечеткое множество выхода, определяемое функцией принадлежности, показанной на рис. 2.8 (внизу справа) и на рис. 2.10 (крайнее справа) должно быть преобразовано в четкое число (другими словами, качественная информация должна быть преобразована в количественную), которое может быть использовано как значение управляющего сигнала. Такая операция называется дефаззификацией и на рис. 2.10 абсцисса точки, определяющей позицию белой разделительной линии, дает значение управляющего сигнала u = -35,9. Таким образом, результирующее нечеткое множество выхода «дефаззифицируется» в четкий управляющий сигнал. Существуют несколько методов дефаззификации.
Центр тяжести (COG). В этом методе четкий выходной сигнал u (белая линия на рис. 2.10) есть абсцисса центра тяжести функции принадлежности результирующего нечеткого множества выхода
,
(2.33)
где − текущая точка в дискретном универсуме, − соответствующее значение степени принадлежности. Выражение можно интерпретировать как взвешенное среднее значение элементов в опорном множестве. Для непрерывного случая суммирование заменяется интегрированием
.
(2.34)
Здесь
− функция принадлежности нечеткого
множества выхода после операции
аккумуляции.
Этот метод является весьма полезным методом. Однако его вычислительная сложность относительна велика. Его также называют центроид площади.
Метод центра тяжести для синглтонов (одноточечных множеств)(COGS) Если функции принадлежностей подзаключений представляют собой синглтоны, то четкий выход определяется выражением
.
(2.35)
Здесь
позиция i-го
синглтона в универсуме выхода,
равно возбуждающей силе
i-го
синглтона. По формуле (2.35) для рассмотренного
в параграфе 2.2.4. примера было вычислено
четкое значение управляющего сигнала,
равное 60,5. Оно представлено синглтоном
в виде тонкой линии на рис.2.8. Этот метод
относительно предпочтителен с точки
зрения вычислительной сложности и к
тому же u
− функция, дифференцируемая в отношении
синглтонов
,
что благоприятно с точки зрения его
(метода) использования в нейронечетких
системах (см. ниже).
Биссектриса
площади (BOA).
В этом методе u
=
,
где значение
определяется из уравнения
.
(2.36)
Из (2.36) следует, что u равняется абсциссе вертикальной линии, которая делит площадь под кривой выходной переменной на две равные части. В (2.36) x − текущее значение точки в универсуме, − функция принадлежности выхода, Min − левое крайнее значение универсума, Max − правое крайнее значение универсума. Иногда этот метод называют методом центра тяжести. Его вычислительная сложность относительно высока, и, кроме того, он может породить сомнения, касающиеся конечного результата. Например тогда, когда нечеткое множество выхода содержит два синглтона с равными степенями истинности, симметрично расположенных относительно нулевого значения. Отсюда можно сделать вывод, что в дискретном случае этот метод применять нельзя.
Метод среднего максимума (MOM). Интуитивный подход − выбрать управление, которое соответствует максимальному значению степени принадлежности выхода, т.е. выбрать наиболее правдоподобное управление. Может случиться, что существует несколько таких максимумов и общий подход − выбрать среднее из значений выхода, соответствующих этим максимумам. Такой метод игнорирует форму функции принадлежности выхода, но обладает относительно невысокой сложностью.
Метод левого максимального значения (LM) и метод максимального правого значения (RM). Другая возможность − выбрать управление, соответствующее крайнему левому максимуму (LM) или крайнему правому (RM) максимуму функции принадлежности выходной переменной. В случае когда объектом управления является робот, он должен выбрать между направлениями движения налево или направо, чтобы избежать столкновения с препятствием, находящимся перед ним. При этом дефаззификатор должен выбрать одно из этих направлений, но ни в коем случае не направление между ними.