
- •1.Коньюнкция условий и разбиение пространства входа.
- •Композиция нечетких отношений.
- •Нечеткое инверсное управление и нечеткая система управления с внутренней моделью
- •Алгоритм жесткой кластеризации.
- •Операции над нечеткими множествами. Модификаторы.
- •8. Проектирование нечетких контроллеров (метод Мамдани)
- •2. Нечеткий контроллер с двумя входами и одним выходом
- •9.Нечеткая система управления с плановым изменением коэффициента.
- •10. Оценка параметров заключений по (мнк)
- •11. Адаптивные нейронные нечеткие системы инференции (anfis)
- •12.Импликация Мамдани. Внешнее произведение.Таблица импликаци
- •13. Нечеткая идентификация. Структура и параметры.
- •14. Нечеткий логический вывод для нескольких правил и нескольких входов.
- •Несколько входов (многомерная лингвистическая модель)
- •16. Функциональная схема нечеткого контроллера
- •17. Отношения между нечеткими множествами
- •18. Алгоритм нечеткой кластеризации с-средних
- •19. Моделирование статических объектов упр-я как аппроксимация функций с помощью нейронных сетей (есть только для динамических объектов)((((((((
- •20. Анализ устойчивости тс модели объекта управления в пространстве состояний.
- •22. Нечеткий логический вывод с исп-м отношений. Пример
- •24. Визуализация алгоритма нечеткого логического вывода.
- •25. Понятия о нечетких множествах
- •26. Обучение нейронной сети. Общие сведения.
- •27. Упрощение алгоритма нечеткого логического вывода.
- •28. Обратное распространение ошибки
- •29. Визуализация нечеткого логического вывода.Аккумуляция.
- •30. Параметры алгоритма с-средних
- •31. Проектирование нечетких контроллеров (метод Мамдани)
- •32. Нечеткая логика. Логические связки.
- •33.Проектирование нечетких контроллеров(метод Мамдани). Многомерный нечеткий контроллер.
- •34. Алгоритм обучения anfis
- •35. Максиминная композиция нечетких отношений. Внутренне произведение. Пример.
- •36. Преобразование вход-выход. Кривая управления. Пов-ть управления.
- •37. Табличное изменение коэффициента усиления (супервизорное управление)
- •38. Алгоритм нечеткой кластеризации Густафсона–Кесселя.
- •39. Генетические алгоритмы
- •40. Извлечение правил с помощью кластеризации
- •41.Нечеткий сумматор для контроллеров с 2 входами и 1 выходом
- •42. Нейросетевое прямое и косвенное адаптивное управление с эталонной моделью
- •43. Обратное распространение ошибки. Обновление весовых коэф-в скрытых слоев. Локальные градиенты.
- •44. Модель Такаги-Сугено как квазилинейное устройство
- •45. Контроллер типа Такаги-Сугено
- •46. Нейросетевое управление с адаптивной линеаризацией обратной связью
- •48. Такаги-Сугено модель оу в пространстве состояний
- •49. Нечеткие множества. Синглтоны и лингвистические переменные.
- •50. Моделирование нелинейных динамических оу с помощью нейронных сетей
- •51. Структура интеллектуальной системы управления
- •52. Многослойная нейронная сеть
- •53. Дефаззификация. Методы дефаззификации.
- •54. Нейронная сеть с радиальными базисными функциями
- •56. Синтез нечеткой обратной связи
- •57. Линейные матричные неравенства, основные понятия.
- •58. Аппроксимация функций (моделирование) с помощью нейронных сетей (персептронов)
- •59. Классификация генетических нечетких систем
- •60. Синтез нейронных нечетких сетей. Структура anfis
- •19. Моделирование статических объектов управления как аппроксимация функций с помощью нейронных сетей.
- •Адаптивные нейронные нечеткие системы интерференции (anfis). . Синтез нечетких нейронных сетей
- •5.1. Введение
- •Адаптивные нейронечеткие системы инференции (anfis)
- •Импликация Мамдани. Внешнее произведение. Таблица импликации.
- •Нечеткая идентификация. Структура и параметры
- •Нечеткий логический вывод для нескольких правил и нескольких входов.
- •1. Настройка пид-регулятора
- •3. Перенос параметров пид-регулятора в нечеткий контроллер
- •Анализ устойчивости тс модели объекта управления в пространстве состояний. Анализ устойчивости тс модели объекта
- •1. Настройка пид-регулятора
- •Нечеткий логический вывод (инференция). Пример.
- •Визуализация нечеткого логического вывода. Агрегирование условий и активизация заключений.
- •Математическая модель нейрона. Математическая модель нейрона
- •Нечеткое управление с предсказанием.
- •Визуализация нечеткого логического вывода. Аккумуляция заключений.
- •5.1. Введение
- •Алгоритм обучения anfis
- •Максиминная композиция нечетких отношений. Внутреннее произведение. Пример.
- •Преобразование вход-выход для нечетких контроллеров. Кривая управления и поверхность управления.
- •2.4. Преобразование вход-выход
- •Табличное изменениекоэффициентаусиления (супервизорное управление).
- •2.8. Табличное изменение коэффициента усиления (супервизорное управление)
- •Алгоритм нечеткой кластеризации Густафсона-Кесселя.
- •Генетические алгоритмы. Генетические алгоритмы
- •Модель Такаги-Сугено как квазилинейное (аффинное) устройство. Модель Такаги-Сугено как квазилинейное устройство
- •Контроллер типа Такаги-Сугено.
- •Деффазификация. Методы деффазификации.
- •2.2.5. Дефаззификация
- •Теорема б универсальной аппроксимации.
- •Такаги-Сугено модель объекта управления в пространстве состояний.
- •Табличный контроллер. Билинейная интерполяция.
- •2.3. Табличный контроллер
- •Моделирование нелинейных динамических объектов управления с помощью нейронных сетей.
- •Моделирование нелинейных динамических процессов (объектов)
- •Упрощение алгоритма нечеткого логического вывода.
- •Обратное распространение ошибки. Обновление весовых коэффициентов выходного слоя.
- •4.6. Обратное распространение ошибки
- •Структура интеллектуальной системы управления.
- •Многослойная нейронная сеть. Многослойная нейронная сеть
- •5.1. Введение
- •Структура anfis
31. Проектирование нечетких контроллеров (метод Мамдани)
Нечеткие контроллеры с одним входом и одним выходом.
1. Нечеткий контроллер с одним входом и одним выходом
Пусть нечеткое правило, установленное с помощью экспертов, гласит: Если ошибка e есть , то управление u есть (2.15). Это правило называется лингвистической моделью нечеткого контроллера.
В результате измерений получено, что ошибка принимает другое лингвистическое значение, нечеткое множество . Делаем логический вывод: управление есть , в такой же степени близкое множеству , в какой степени близко к . Пусть ФП термов и определены и имеют вид и (рис. 2.7,а). Известна ФП для множества . Заметим, что множества и заданы на одном универсуме. При этом степень истинности утверждения «нечеткое множество близко к множеству » определяется композицией (шаг 1 алгоритма нечеткого логического вывода)
(2.16)
Отсюда нечеткий логический вывод (заключение) приводит к ФП (шаг 2 алгоритма нечеткого логического вывода)
, (2.17) соответствующей множеству .Операция (2.17) называется активизацией правила. Весь алгоритм максиминной инференции графически иллюстрируется рис. 2.7,а. В системах управления представляет собой, как правило, четкое множество, включающее лишь один элемент (e-четкая (количественная) переменная), и его можно рассматривать как нечеткое множество с ФП , (2.18)
т.е. как синглтон (четкое число). Такой метод определения степени принадлежности называется синглтонной фаззификацией. При этом степень истинности
, (2.19) т.е. равна степени принадлежности при , другими словами, степени принадлежности, полученной при фаззификации (см. рисунок ниже).Для случая, когда есть синглтон с ФП (2.18), то в соответствии с (2.17)
(2.20)
В дальнейшем нас будет интересовать в основном только этот случай. Если нечеткое множество − синглтон с ФП (2.21)
то нечеткое множество будет представлять собой также синглтон с ФП
.
32. Нечеткая логика. Логические связки.
Логика начиналась с изучения естественного языка с точки зрения аргументов и убеждений и могла быть использована для суждения о корректности цепи высказываний, например в математических доказательствах. Заметим, что высказывание - мысль, выраженная повествовательным предложением и являющаяся истинной или ложной, а истина - адекватное отображение предметов и явлений познающим субъектом. В двухзначной (точной) логике высказывание является верным (истинным) или неверным (ложным), но не тем и другим. «Истина» или «ложь», приписываемые высказыванию, называются истинностными значениями (значениями истинности). В нечеткой логике нечеткое высказывание может быть верным или неверным или иметь промежуточные истинностные значения, например, может быть верно. Высказывание уровень высокий является примером такого высказывания в нечетком контроллере. По-видимому, удобно ограничить возможные истинностные значения в дискретной области, скажем значениями {0 0,5 1} для ложно, может быть верно, верно. В таком случае мы будем иметь дело с многозначной логикой, в данном случае, с трехзначной логикой. На практике разделение единичного интервала на меньшие части может быть более подходящим. При этом интервал {0 1} включает множество значений истинности нечетких высказываний.
Изначально Задэ интерпретировал значение истинности в нечеткой логике, например, Очень точно, как нечеткое множество. Таким образом, Задэ заложил в основание нечеткой (лингвистической) логики трактовку Истины как лингвистической переменной, значениями которой являются скорее слова или высказывания, чем числа.
Логические связки (соединения)
В ежедневных разговорах и в логике фразы (высказывания) связывают с помощью слов не, и, или, если - то (или импликация) и если и только если. Эти слова называют связками. Высказывание, которое модифицируется с помощью слова «не», называется отрицанием исходного высказывания. Слово «и» используется, чтобы объединить два высказывания в форме конъюнкции (от conjunction - союз, связь) двух высказываний. Аналогично высказывание, которое образовано путем соединения двух высказываний с помощью слова «или», называется дизъюнкцией (от disjunction − разобщение) двух высказываний. Из двух высказываний мы можем построить некое высказывание с помощью формы «Если…то…»; последнее называют условным высказыванием (предложением). Высказывание, стоящее за словом «Если», называется антецедентом (предпосылкой), а высказывание, следующее за словом «то», называют консеквентом (следствием) или заключением. Таким образом, антецедент является первой частью условного высказывания (предложения), а консеквент – второй частью этого условного высказывания. Другие идиомы (словосочетания), которые мы будем считать, имеющими то же самое значение (тот же самый смысл), что «если p, то q» (где p и q есть высказывания), звучат как «p влечет за собой q», «p только, если q»,
«q, если p» и т.п. Слова «если и только если» (или эквивалентность) используются, чтобы из двух высказываний образовать двухусловное высказывание, которое принимает значение истина в случае истинности обоих высказываний одновременно и значение ложь в остальных случаях. Надо сказать, что операция, называемая импликацией высказываний (от implico – тесно связываю), в общем случае отличается от базового правила (правила продукции) Если A, то B. Действительно, логическая импликация высказываний не заключает в себе никакой причины, никакой временной или иной взаимосвязи между предпосылкой и следствием.
Путем введения букв и специальных символов структура связок может быть показана красноречивым образом. Наш выбор символов имеет такой вид
для «не» (отрицание)
для «и» (конъюнкция)
для «или» (дизъюнкция)
для «если-то» (импликация)
для «если и только если» (эквивалентность)
В нечеткой логике расширения «не», «и» и «или» также называют нечетким отрицанием, T-нормой и S-нормой соответственно.