
- •1. Классификация металлов
- •2. Кристаллическое строение металла.
- •4. Строение кристаллов (идеальное, реальное).
- •5. Микроскопический анализ металлов
- •6. Кристаллизация.
- •7. Закономерности процесса кристаллизации
- •8. Дендритное строение кристаллов. Строение слитка.
- •9. Аморфное строение
- •10.Упругая и пластическая деформации.
- •11. Дислокационный механизм пластической деформации.
- •12.Способы определения мех. Свойств металлов.
- •1. Испытание на растяжение
- •2. Испытание на твердость
- •3. Испытание на ударную вязкость
- •13. Наклёп
- •14. Металлические сплавы
- •15. Твердые растворы.
- •16. Химические соединения.
- •17. Диаграмма состояния. Построение диаграмм.
- •18. Диаграмма состояния для сплавов, образующие механические смеси. Правило отрезков.
- •19. Диаграмма состояния для сплавов с неограниченной растворимостью в твёрдом состоянии.
- •2 0. Диаграмма состояния для сплавов, образующие ограниченные твердые растворы с эвтектикой.
- •25.Диаграмма железо-цементит
- •26.Углеродистые стали.
- •27. Автоматные стали.
- •28. Чугун.
- •32. Термическая обработка, ее параметры, методы осуществления.
- •34. Структурные превращения при термообработке стали и их классификация. Виды термообработки стали.
- •36. Превращение в стали при нагреве. Образование и рост аустенитного зерна.
- •37. Распад аустенита
- •38. Мартенситное превращение и его особенности.
- •39. Превращение при отпуске закалённой стали.
- •40. Влияние термической обработки на свойства стали
- •41. Термическая обработка
- •43. Прокаливаемость стали
- •44. Отжиг и нормализация стали, их назначение и способы осуществления.
- •45. Поверхностная закалка стали
- •46. Цементация
- •47. Азотирование стали.
- •48. Нитроцементация. Диффузная металлизация.
- •49. Влияние элементов на полиморфизм железа
- •51. Влияние легирующих элементов на превращения в стали.
- •52. Классификация и маркировка легированных сталей
- •53. Цементуемые стали.
- •54. Улучшаемые стали
- •55. Пружинная и шарикоподшипниковая стали.
- •56. Инструментальные стали, их маркировка и области применения
- •57. Быстрорежущие стали
- •58. Штамповые стали
- •59. Твердые сплавы
- •60. Жаропрочные, жаростойкие и нержавеющей стали, их термообработка, свойства и применение.
- •61. Коррозионно-стойкие стали
- •6 2. Алюминий и его сплавы, литейные и деформируемые алюминиевые сплавы, их назначение, термообработка и свойства.
- •63. Медь и ее сплавы
- •64. Баббиты и другие подшипниковые сплавы
- •65. Пластические массы
2. Испытание на твердость
Твердость – способность материала оказывать сопротивление проникновению в него другого, более твердого тела – индентора. Твердость материала определяют методами Бринелля, Роквелла, Виккерса, Шора (рис.2).
Рис.
2. Схемы определения твердости по
Бринеллю(а),
Твердость металла по Бринеллю указывается буквами НВ и числом. Для перевода числа твердости в систему СИ пользуются коэффициентом К = 9,8 • 106, на который умножают значение твердости по Бринеллю: НВ = НВ • К, Па.
Метод определения твердости по Бринеллю не рекомендуется применять для сталей с твердостью свыше НВ 450 и цветных металлов с твердостью более 200 НВ.
Для различных материалов установлена корреляционная связь между пределом прочности (в МПа) и числом твердости НВ: σв ≈ 3,4 НВ - для горячекатаных углеродистых сталей; σв ≈ 4,5 НВ - для медных сплавов, σв ≈ 3,5НВ - для алюминиевых сплавов.
3. Испытание на ударную вязкость
Ударная вязкость характеризует способность материала оказывать сопротивление динамическим нагрузкам и проявляющейся при этом склонности к хрупкому разрушению. Для испытания на удар изготовляют специальные образцы с надрезом, которые потом разрушают на маятниковом копре (рис.3). По шкале маятникового копра определяют работу К, затраченную на разрушение, и рассчитывают основную характеристику, получаемую в результате этих испытаний – ударную вязкость. Она определяется отношением работы разрушения образца к площади его поперечного сечения и измеряется в МДж/м2.
Для обозначения ударной вязкости применяют буквы КС и добавляют третью, которая указывает на вид надреза на образце: U, V, T. Запись KCU означает ударную вязкость образца с U-подобным надрезом, KCV - с V-подобным надрезом, а KCT - с трещиной, созданной в основании надреза. Работа разрушения образца при проведении ударных испытаний содержит две составляющие: работу зарождения трещины (Аз) и работу распространения трещины (Ар).
Определение ударной вязкости особенно важно для металлов, которые работают при низких температурах и выявляют склонность к хладноломкости, то есть к снижению ударной вязкости при понижении температуры эксплуатации.
13. Наклёп
Наклёп – это совокупность структурных изменений и связанных с ними св-в при холодной пластичной деформации.
В рез-те деф-ции зёрна выстраиваются (вытягиваются в направлении действующей нагрузки. Развивается анизотропия в металле. Под анизотропией понимают различие св-в по различным направлениям в металле. Выше св-ва в направлении пластической деформации (действующей нагрузки).
При холодной пластической деформации прочностные хар-ки (твёрдость, предел прочности и растяжений) увеличиваются в 2-3 раза, тогда как хар-ки пластичности (относит. удлинение, относит. сужение) снижаются 30-40 раз.
Упрочнение металлов при холодной пластической деф-ции обусловлена увелич. дефектов кристаллич. решётки (вакансий, дислакаций), увеличением числа дислокаций одного знака, а также увеличением угла разориентации м/у блоками.
Рекристаллизация.
После достижения опред. тем-р происходит изменение уже на микроскопическом уровне. Под микроскопом на фоне вытянутых зёрен можно наблюдать мелкие зёрна равноосной формы. По мере увеличения длительности отжига или повышении тем-ры происходит рост мелких зёрен за счёт вытянутых деформируемых зёрен. Образование и рост новых зёрен за счёт деформированных зёрен той же фазы наз-ся первичной рекристаллизацией или рекристаллизацией обработки.При дальнейшем увелич. тем-ры и длительности отжига происходит «поедание» одними зёрнами других зёрен. Следствием явл-ся разнозёренность стр-р. В пределе можно достичь того, что стр-ра металла будет состоять только зи очень крупных зёрен. Это так наз. собирательная рекристаллизация. Тем-ра начала рекристаллиз. не явл-ся постоянной физ. величиной как, например, тем-ра плавления металла. Тем-ра начала рекристаллиз. будет зависеть от степени предварительной деф-ции металла, длительности процесса и ряда др. факторов.
Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=aTпл , а=0,2…0,6.
Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зерна можно было получить.
Холодная и горячая деформация.
Холодная деф. проводиться при тем-рах ниже тем-ры рекристаллиз. и сопровождается наклёпом (наготовка).
Гор. деф. провод-ся при тем-рах выше тем-ры рекристаллиз. При горячей деф. наклёп не происходит поскольку этот наклёп сразу устраняется рекристаллизацией.