
- •1. Классификация металлов
- •2. Кристаллическое строение металла.
- •4. Строение кристаллов (идеальное, реальное).
- •5. Микроскопический анализ металлов
- •6. Кристаллизация.
- •7. Закономерности процесса кристаллизации
- •8. Дендритное строение кристаллов. Строение слитка.
- •9. Аморфное строение
- •10.Упругая и пластическая деформации.
- •11. Дислокационный механизм пластической деформации.
- •12.Способы определения мех. Свойств металлов.
- •1. Испытание на растяжение
- •2. Испытание на твердость
- •3. Испытание на ударную вязкость
- •13. Наклёп
- •14. Металлические сплавы
- •15. Твердые растворы.
- •16. Химические соединения.
- •17. Диаграмма состояния. Построение диаграмм.
- •18. Диаграмма состояния для сплавов, образующие механические смеси. Правило отрезков.
- •19. Диаграмма состояния для сплавов с неограниченной растворимостью в твёрдом состоянии.
- •2 0. Диаграмма состояния для сплавов, образующие ограниченные твердые растворы с эвтектикой.
- •25.Диаграмма железо-цементит
- •26.Углеродистые стали.
- •27. Автоматные стали.
- •28. Чугун.
- •32. Термическая обработка, ее параметры, методы осуществления.
- •34. Структурные превращения при термообработке стали и их классификация. Виды термообработки стали.
- •36. Превращение в стали при нагреве. Образование и рост аустенитного зерна.
- •37. Распад аустенита
- •38. Мартенситное превращение и его особенности.
- •39. Превращение при отпуске закалённой стали.
- •40. Влияние термической обработки на свойства стали
- •41. Термическая обработка
- •43. Прокаливаемость стали
- •44. Отжиг и нормализация стали, их назначение и способы осуществления.
- •45. Поверхностная закалка стали
- •46. Цементация
- •47. Азотирование стали.
- •48. Нитроцементация. Диффузная металлизация.
- •49. Влияние элементов на полиморфизм железа
- •51. Влияние легирующих элементов на превращения в стали.
- •52. Классификация и маркировка легированных сталей
- •53. Цементуемые стали.
- •54. Улучшаемые стали
- •55. Пружинная и шарикоподшипниковая стали.
- •56. Инструментальные стали, их маркировка и области применения
- •57. Быстрорежущие стали
- •58. Штамповые стали
- •59. Твердые сплавы
- •60. Жаропрочные, жаростойкие и нержавеющей стали, их термообработка, свойства и применение.
- •61. Коррозионно-стойкие стали
- •6 2. Алюминий и его сплавы, литейные и деформируемые алюминиевые сплавы, их назначение, термообработка и свойства.
- •63. Медь и ее сплавы
- •64. Баббиты и другие подшипниковые сплавы
- •65. Пластические массы
43. Прокаливаемость стали
Под прокаливаемостью подразумевают способность стали закаливаться на определенную глубину. Прокаливаемость не надо смешивать с закаливаемостью, которая характеризуется максимальным значением твердости, приобретенной сталью в результате закалки. При закалке стали в зависимости от сечения детали и критической скорости закалки будет получаться различная структура от края к сердцевине.
Так как внутренние слои детали охлаждаются медленнее наружных, то в тех объемах, где скорость охлаждения будет меньше критической, будет образовываться тростит, сорбит и т. д. Если сердцевина будет охлаждаться со скоростью, большей критической, то по всему сечению детали будет мартенситная структура. В соответствии с изменением • скорости охлаждения и структуры от края к сердцевине будет изменяться и твердость, следовательно, чем меньше критическая скорость закалки, тем больше прокаливаемость и, наоборот, чем больше критическая скорость закалки, тем меньше прокаливаемость.
Характеристикой глубины прокаливаемости принято считать расстояние от поверхности до слоя с полумартенситной структурой (50% мартенсита и 50% тростита). Твердость полумартенситной структуры зависит от содержания углерода и повышается с повышением содержания углерода.
Прокаливаемость можно определять по излому, измерением твердости по сечению образца и измерением твердости подлине образца (методом торцовой закалки).
Определение прокаливаемости по излому производится на образцах сечением 20×20 мм, длиной 100 мм с надрезом для излома. Образцы нагревают в печи до температуры закалки, после выдержки охлаждают (с соответствующей скоростью), ломают и по излому определяют глубину прокаливаемости. Этот метод применяется для определения прокаливаемости главным образом инструментальных сталей.
При определении прокаливаемости методом измерения твердости по сечению образец стали нагревают до температуры закалки, после выдержки охлаждают в воде или масле, разрезают и по диаметру измеряют твердость.
44. Отжиг и нормализация стали, их назначение и способы осуществления.
Отжиг как правило проводят для заготовок перед механической обработкой. Основные задачи отжига – получить хорошую обрабатываемость заготовки. Отжиг – это операция предварительной термообработки. Один из видов – рекристализационный отжиг. Обычно его проводят для стали при Т=550-650 С. После этого отжига снимается наклёп. Чаще выполняют полный и неполный отжиг (отжиг 2-го рода). Для доэвт. сталей осуществляют полный отжиг. Скорость охлаждения вместе с печью 40-60 град/час. Низкоуглеродистые стали можно подвергать нормализации. Заэвт. углер. стали чаще подвергают неполному отжигу. После неполного – перлит зернистый, после полного – формируется структура перлит пластинчатый. Высоколегированные стали при отжиге необходимо подвергать охлаждению со скоростью не выше 20 град/сек. Не все печи дают такую скорость охлаждения. Если таких печей нет, то подвергают изотермическому отжигу. Если сталь имеет неравномерный хим. состав, то проводят диффузионный (гомогенизирующий) отжиг. В этом случае дают длительную выдержку при температуре выше 1000 С и за счёт диффузионных процессов хим. состав выравнивается. Такой отжиг проводят десятки часов.