
- •1. Классификация металлов
- •2. Кристаллическое строение металла.
- •4. Строение кристаллов (идеальное, реальное).
- •5. Микроскопический анализ металлов
- •6. Кристаллизация.
- •7. Закономерности процесса кристаллизации
- •8. Дендритное строение кристаллов. Строение слитка.
- •9. Аморфное строение
- •10.Упругая и пластическая деформации.
- •11. Дислокационный механизм пластической деформации.
- •12.Способы определения мех. Свойств металлов.
- •1. Испытание на растяжение
- •2. Испытание на твердость
- •3. Испытание на ударную вязкость
- •13. Наклёп
- •14. Металлические сплавы
- •15. Твердые растворы.
- •16. Химические соединения.
- •17. Диаграмма состояния. Построение диаграмм.
- •18. Диаграмма состояния для сплавов, образующие механические смеси. Правило отрезков.
- •19. Диаграмма состояния для сплавов с неограниченной растворимостью в твёрдом состоянии.
- •2 0. Диаграмма состояния для сплавов, образующие ограниченные твердые растворы с эвтектикой.
- •25.Диаграмма железо-цементит
- •26.Углеродистые стали.
- •27. Автоматные стали.
- •28. Чугун.
- •32. Термическая обработка, ее параметры, методы осуществления.
- •34. Структурные превращения при термообработке стали и их классификация. Виды термообработки стали.
- •36. Превращение в стали при нагреве. Образование и рост аустенитного зерна.
- •37. Распад аустенита
- •38. Мартенситное превращение и его особенности.
- •39. Превращение при отпуске закалённой стали.
- •40. Влияние термической обработки на свойства стали
- •41. Термическая обработка
- •43. Прокаливаемость стали
- •44. Отжиг и нормализация стали, их назначение и способы осуществления.
- •45. Поверхностная закалка стали
- •46. Цементация
- •47. Азотирование стали.
- •48. Нитроцементация. Диффузная металлизация.
- •49. Влияние элементов на полиморфизм железа
- •51. Влияние легирующих элементов на превращения в стали.
- •52. Классификация и маркировка легированных сталей
- •53. Цементуемые стали.
- •54. Улучшаемые стали
- •55. Пружинная и шарикоподшипниковая стали.
- •56. Инструментальные стали, их маркировка и области применения
- •57. Быстрорежущие стали
- •58. Штамповые стали
- •59. Твердые сплавы
- •60. Жаропрочные, жаростойкие и нержавеющей стали, их термообработка, свойства и применение.
- •61. Коррозионно-стойкие стали
- •6 2. Алюминий и его сплавы, литейные и деформируемые алюминиевые сплавы, их назначение, термообработка и свойства.
- •63. Медь и ее сплавы
- •64. Баббиты и другие подшипниковые сплавы
- •65. Пластические массы
40. Влияние термической обработки на свойства стали
Термическая обработка проводится для изменения механических свойств стали (прочности, твердости, пластичности, вязкости). Эти свойства зависят от структуры стали после термической обработки.
После отжига, отпуска, нормализации (отпуск с охлаждением на воздухе) структура стали состоит из пластичного феррита и цементита, обладающего высокой твердостью и хрупкостью. Включения карбидов оказывают упрочняющее действие на стали. При малом числе цементитных включений стали пластичны и имеют невысокую твердость. Измельчение частиц цементита при термической обработке приводит к упрочнению стали. При укреплении частиц цементита увеличивается способность стали к пластической деформации.
Повышение температуры отпуска закаленных изделий, ведущее к укрупнению цементитных частиц, снижает прочность. Прочность снижается при уменьшении скорости охлаждения в процессе закалки или повышении температуры из термического распада.
После закалки структура стали состоит из мартенсита и остаточного аустенита. Твердость определяется твердостью мартенсита и его количеством. Пластичность закаленной стали зависит не только от содержания мартенсита, но и от его дисперсности (размера игл). Для обеспечения высокого комплекса механических свойств стремятся получить после закалки мелкоигольчатую структуру, что достигается при мелкозернистой структуре аустенита до превращения.
Твердость стали зависит от температуры изотермического распада аустенита. Чем ниже температура изотермического распада аустенита, тем выше дисперсность перлитных фаз и вследствие этого выше твердость стали.
Заключительной операцией термической обработки является отпуск. При отпуске стальное изделие приобретает свои окончательные свойства. Чем выше температура отпуска, тем ниже прочность и выше пластичность стали. Наибольшая пластичность соответствует отпуску при температуре 600—650°С.
Механические свойства стали после закалки и высокого отпуска оказываются выше по сравнению с отожженной или нормализованной сталью.
Двойная термическая обработка, состоящая в закалке с последующим высоким отпуском, ведущая к существенному улучшению общего комплекса механических свойств, называется улучшением и является основным видом термической обработки конструкционных сталей.
41. Термическая обработка
Термическая обработка металлов и сплавов — процесс тепловой обработки металлических изделий, целью которого является изменение структуры и свойств в заданном направлении.
Среди основных видов термической обработки следует отметить:
Отжиг (гомогенизация и нормализация). Целью является получение однородной зёренной микроструктуры и растворение включений. Последующее охлаждение является медленным, препятствующим образованию неравновесных структур типа мартенсита.
Закалку проводят с повышенной скоростью охлаждения с целью получения неравновесных структур типа мартенсита. Критическая скорость охлаждения, необходимая для закалки зависит от материала.
Отпуск необходим для снятия внутренних напряжений, внесённых при закалке. Материал становится более пластичным при некотором уменьшении прочности.
Дисперсионное твердение (старение). После проведения отжига проводится нагрев на более низкую температуру с целью выделения частиц упрочняющей фазы. Иногда проводится ступенчатое старение при нескольких температурах с целью выделения нескольких видов упрочняющих частиц.