Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзамен по БД3.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
419.33 Кб
Скачать
  1. Классификация информационных систем. Краткая характеристика основных видов информационных систем.

«информационная система — совокупность содержащейся в базах данных информации и обеспечивающих её обработку информационных технологий и технических средств»

Классификация ИС:

Классификация по архитектуре

По степени распределённости отличают:

  • настольные (desktop), или локальные ИС, в которых все компоненты (БД, СУБД, клиентские приложения) находятся на одном компьютере;

  • распределённые (distributed) ИС, в которых компоненты распределены по нескольким компьютерам.

Распределённые ИС, в свою очередь, разделяют на:

  • файл-серверные ИС (ИС с архитектурой «файл-сервер»);

  • клиент-серверные ИС (ИС с архитектурой «клиент-сервер»).

В файл-серверных ИС база данных находится на файловом сервере, а СУБД и клиентские приложения находятся на рабочих станциях.

В клиент-серверных ИС база данных и СУБД находятся на сервере, а на рабочих станциях находятся клиентские приложения.

В свою очередь, клиент-серверные ИС разделяют на двухзвенные и многозвенные.

В двухзвенных (англ. two-tier) ИС всего два типа «звеньев»: сервер баз данных, на котором находятся БД и СУБД (back-end), и рабочие станции, на которых находятся клиентские приложения (front-end). Клиентские приложения обращаются к СУБД напрямую.

В многозвенных (англ. multi-tier) ИС добавляются промежуточные «звенья»: серверы приложений (application servers). Пользовательские клиентские приложения не обращаются к СУБД напрямую, они взаимодействуют с промежуточными звеньями. Типичный пример применения многозвенности — современные веб-приложения, использующие базы данных.

Классификация по степени автоматизации

  • автоматизированные: ИС, в которых автоматизация может быть неполной (то есть требуется постоянное вмешательство персонала);

  • автоматические: ИС, в которых автоматизация является полной, то есть вмешательство персонала не требуется или требуется только эпизодически.

«Ручные ИС» («без компьютера») существовать не могут, поскольку существующие определения предписывают обязательное наличие аппаратно-программных средств.

Классификация по характеру обработки данных

  • информационно-справочные, или информационно-поисковые ИС, в которых нет сложных алгоритмов обработки данных, а целью системы является поиск и выдача информации в удобном виде;

  • ИС обработки данных, или решающие ИС, в которых данные подвергаются обработке по сложным алгоритмам. К таким системам в первую очередь относят автоматизированные системы управления и системы поддержки принятия решений.

Классификация по сфере применения

Поскольку ИС создаются для удовлетворения информационных потребностей в рамках конкретной предметной области, то каждой предметной области (сфере применения) соответствует свой тип ИС. Перечислять все эти типы не имеет смысла, так как количество предметных областей велико, но можно указать в качестве примера следующие типы ИС:

  • Экономическая информационная система — информационная система, предназначенная для выполнения функций управления на предприятии.

  • Медицинская информационная система — информационная система, предназначенная для использования в лечебном или лечебно-профилактическом учреждении.

  • Географическая информационная система — информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных (пространственных данных).

Классификация по охвату задач (масштабности)

  • Персональная ИС предназначена для решения некоторого круга задач одного человека.

  • Групповая ИС ориентирована на коллективное использование информации членами рабочей группы или подразделения.

  • Корпоративная ИС в идеале охватывает все информационные процессы целого предприятия, достигая их полной согласованности. Такие системы иногда называют системами комплексной автоматизации предприятия.

  1. Этапы развития баз данных.

Первый этап — базы данных на больших ЭВМ

В 1968 году была введена в эксплуатацию первая СУБД система IMS фирмы IBM. В 1975 году появился первый стандарт ассоциации по языкам систем обработки данных — Conference of Data System Languages (CODASYL). В дальнейшее развитие теории БД большой вклад был сделан американским математиком Э.Ф. Коддом, который является создателем реляционной модели данных. Можно выделить четыре этапа в развитии данного направления в обработке данных.

Первый этап развития СУБД связан с организацией баз данных на больших машинах типа IBM 360/370, ЕС-ЭВМ и мини-ЭВМ типа PDP11 (фирмы Digital Equipment Corporation — DEC), разных моделях HP.

Базы данных хранились во внешней памяти центральной ЭВМ, пользователями этих баз данных были задачи, запускаемые в основном в пакетном режиме. Интерактивный режим доступа обеспечивался с помощью консольных терминалов, которые не обладали вычислительными ресурсами (процессором, внешней памятью) и служили устройствами ввода-вывода для центральной ЭВМ. Программы к БД писались на различных языках и запускались как обычные числовые программы. Мощные операционные системы обеспечивали возможность условно параллельного выполнения всего множества задач. Эти системы можно было отнести к системам распределенного доступа, потому что база данных была централизованной, хранилась на устройствах внешней памяти одной центральной ЭВМ, а доступ к ней поддерживался от многих пользователей-задач.

Особенности этого этапа развития выражаются в следующем:

  1. Все СУБД базируются на мощных мультипрограммных операционных системах (MVS, SVM, RTE, OSRV, RSX, UNIX), поэтому в основном поддерживается работа с централизованной базой данных в режиме распределенного доступа.

  2. Функции управления распределением ресурсов осуществляются операционной системой (ОС).

  3. Поддерживаются языки низкого уровня манипулирования данными.

  4. Значительная роль отводится администрированию данных.

  5. Проводятся серьезные работы по обоснованию и формализации реляционной модели данных, и была создана первая система (System R), реализующая идеологию реляционной модели данных.

  6. Проводятся теоретические работы по оптимизации запросов и управлению распределенным доступом к централизованной БД, было введено понятие транзакции.

  7. Результаты научных исследований открыто обсуждаются в печати, идет мощный поток общедоступных публикаций, касающихся всех аспектов теории и практики баз данных, и результаты теоретических исследований активно внедряются в коммерческие СУБД.

Появляются первые языки высокого уровня для работы с реляционной моделью данных. Однако отсутствуют стандарты для этих первых языков.

Второй этап - эпоха персональных компьютеров

Появились программы, которые назывались системами управления базами данных и позволяли хранить значительные объемы информации, они имели удобный интерфейс для заполнения данных, встроенные средства для генерации различных отчетов. Эти программы позволяли автоматизировать многие учетные функции, которые раньше велись вручную.

Особенности этого этапа следующие:

  1. Все СУБД были рассчитаны на создание БД в основном с однопользовательским доступом.

  2. Большинство СУБД имели развитый и удобный пользовательский интерфейс, большинство СУБД предлагали развитый и удобный инструментарии для разработки готовых приложений без программирования. Инструментальная среда состояла из готовых элементов приложения в виде шаблонов экранных форм, отчетов, этикеток (Labels), графических конструкторов запросов.

  3. Во всех настольных СУБД поддерживался только внешний уровень представления реляционной модели, то есть только внешний табличный вид структур данных.

  4. При наличии высокоуровневых языков манипулирования данными типа реляционной алгебры и SQL в настольных СУБД поддерживались низкоуровневые языки манипулирования данными на уровне отдельных строк таблиц.

  5. В настольных СУБД отсутствовали средства поддержки ссылочной и структурной целостности базы данных. Эти функции должны были выполнять приложения, однако скудость средств разработки приложений иногда не позволяла это сделать.

  6. Наличие однопользовательского режима работы фактически привело к вырождению функций администрирования БД и в связи с этим — к отсутствию инструментальных средств администрирования БД.

  7. Сравнительно скромные требования к аппаратному обеспечению со стороны настольных СУБД.

Третий этап - распределенные базы данных

все больше информации передастся между компьютерами, встает задача согласованности данных, обрабатывающихся в разных местах, но логически друг с другом связанных, возникают задачи, связанные с параллельной обработкой транзакций — последовательностей операций над БД, переводящих ее из одного состояния в другое. Успешное решение этих задач приводит к появлению распределенных баз данных, сохраняющих все преимущества настольных СУБД .

Особенности данного этапа:

  1. Практически все современные СУБД обеспечивают поддержку полной реляционной модели, а именно:

  2. структурной целостности — допустимыми являются только данные, представленные в виде отношений реляционной модели;

  3. языковой целостности, то есть языков манипулирования данными высокого уровня (в основном SQL);

  4. ссылочной целостности — контроля за соблюдением ссылочной целостности в течение всего времени функционирования системы..

  5. Большинство современных СУБД рассчитаны на многоплатформенную архитектуру, то есть они могут работать на компьютерах с разной архитектурой и под разными операционными системами.

  6. Для того чтобы не потерять клиентов, которые ранее работали на настольных СУБД, практически все современные СУБД имеют средства подключения клиентских приложений, разработанных с использованием настольных СУБД.

  7. разработка ряда стандартов в рамках языков описания и манипулирования данными (SQL89, SQL92, SQL99) и технологий по обмену данными между различными СУБД, к которым можно отнести и протокол ODBC (Open DataBase Connectivity), предложенный фирмой Microsoft.

  8. начало работ, связанных с концепцией объектно-ориентированных БД — ООБД. Представителями СУБД, относящимся ко второму этапу, можно считать MS Access 97 и все современные серверы баз данных Огас1е7.3, 0гас1е 8.4, MS SQL 6.5, MS SQL 7.0, System 10, System 11, Informix, DB2, SQL Base.

Четвертый этап - перспективы развития систем управления базами данных

появлением новой технологии доступа к данным — интернет. Основное отличие этого подхода от технологии клиент-сервер состоит в том, что отпадает необходимость использования специализированного клиентского программного обеспечения. Для работы с удаленной базой данных используется стандартный броузер Internet, например Microsoft Internet Explorer или Netscape Navigator. При этом встроенный в загружаемые пользователем HTML-страницы код, написанный обычно на языках Java, Java-script, Perl и других, отслеживает все действия пользователя и транслирует их в низкоуровневые SQL-запросы к базе данных, выполняя, таким образом, ту работу, которой в технологии клиент-сервер занимается клиентская программа. Удобство данного подхода привело к тому, что он стал использоваться для пользователей локальной сети предприятия. В этом случае для подключения нового пользователя к возможности использовать данную задачу не требуется установка дополнительного клиентского программного обеспечения.

  1. Сетевая и иерархическая модели данных.

Модель данных - интегрированный набор понятий для описания и обработки данных, связей между ними и ограничений, накладываемых на данные в некоторой организации.

Модели данных подразделяются на три категории:

  • объектные (object-based) модели данных,

  • модели данных на основе записей (record-based),

  • физические модели данных.

Сетевая МД

Сетевая модель данных – модель, состоящая из записей, элементов данных и связей типа “один ко многим” (1:М), установленных между записями.

В сетевой модели данные представлены в виде коллекций записей, а связи - в виде наборов. 

Для описания схемы сетевой БД используется две группы типов: "запись" и "связь". Тип "связь" определяется для двух типов "запись": предка и потомка. Переменные типа "связь" являются экземплярами связей.

Сетевая БД состоит из набора записей и набора соответствующих связей. 

К числу важнейших операций манипулирования данными баз сетевого типа можно отнести следующие:

  • поиск записи в БД;

  • переход от предка к первому потомку;

  • переход от потомка к предку;

  • создание новой записи;

  • удаление текущей записи;

  • обновление текущей записи;

  • включение записи в связь;

  • исключение записи из связи;

  • изменение связей и т.д.

Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат памяти и оперативности. В сравнении с иерархической моделью сетевая представляет большие возможности в смысле допустимости образования произвольных связей.

Недостатком сетевой модели данных является высокая сложность и жесткость схемы БД, построенной на ее основе, а также сложность для понимания и выполнения обработки информации в БД обычным пользователем. Кроме того, в сетевой модели данных ослаблен контроль целостности связей вследствие допустимости установления произвольных связей между записями.

Системы на основе сетевой модели не получили широкого распространения на практике.

Иерархическая МД

Иерархическая модель является ограниченным подтипом сетевой модели. Данные также представлены как коллекции записей, а связи — как наборы. 

в иерархической модели узел может иметь только одного родителя. Иерархическая модель может быть представлена как древовидный граф с записями в виде узлов (которые также называются сегментами) и множествами в виде ребер.

Данная модель характеризуется такими параметрами, как уровни, узлы, связи. Принцип работы модели таков, что несколько узлов более низкого уровня соединяется при помощи связи с одним узлом более высокого уровня.

  1. Понятие базы данных. Основные характеристики БД

База данных — совокупность взаимосвязанных, хранящихся вместе данных и их описаний, организованных по опреде­ленным правилам, предусматривающим общие принципы описания, хранения и манипулирования данными, допу­скающая минимальную избыточность и возможность ис­пользования для нескольких приложений.

Виды баз данных