
- •1. Кинематика. Кинематика точки. Способы задания движения точки:
- •2. Скорость точки. Вектор скорости:
- •3. Ускорение точки. Вектор ускорения:
- •4. Опред-ие ск-ти и уск-ия точки при коор-ом способе задания дв-ия:
- •5. Опред-ие ск-ти и уск-ия точки при естественном способе задания дв-ия:
- •9. Равномерное и равнопеременное вращение:
- •10. Скорости и ускорения точек тела при вращательном движении:
- •11. Выражения скоростей и ускорений точек тела при вращательном движении в виде векторных произведений:
- •12. Плоскопараллельное движение твёрдого тела. Уравнение плоского движения. Разложение плоского движения на поступательное и вращательное:
- •13. Определение скоростей тела при плоском движении:
- •14. Теорема о проекциях скоростей двух точек тела:
- •15. Мгновенный центр скоростей. Теорема о существовании и единстве м.Ц.С.:
- •16. Определение скоростей точек тела с помощью м.Ц.С.:
- •17. Частные случаи определения м.Ц.С:
- •18. Опред-ие уск-ий точек тела при плоском движении:
- •19. М.Ц.У. Опред-ие ускорений точек тела с помощью м.Ц.С.:
- •20. Сферическое дв-ие тв-ого тела. Эйлеровы углы. Ур-ия сферического дв-ия:
- •21. Теорема Эйлера-Даламбера:
- •22. Мгновенная ось вращения. Мгновенные угловая ск-ть и угловое уск-ие тела при сферическом дв-ии:
- •25. Формула Пуассона:
- •26. Общий случай движения свободного твердого тела:
- •27. Абсолютное, относительное и переносное движение точки:
- •28. Сложение скоростей при сложном движении точки:
- •29. Сложение ускорений при сложном движении точки. Случай поступательного переносного движения:
- •30. Теорема Кориолиса. Ускорение Кориолиса:
- •31. Опред-ние направления и модуля ускорения Кориолиса. Случаи, когда ускорение Кориолиса равно нулю:
- •32. Сложное дв-ие твёрдого тела. Сложение поступательных движений:
- •36. Кинетические уравнения Эйлера:
- •37. Сложение поступательного и вращательного движений (векторы Vz и Vc направлены под любым углом друг к другу):
- •38. Методика расчета равновесия тела при сходящихся и произвольных силах:
- •1. Геометрическое условие равновесия.
- •2. Аналитические условия равновесия.
- •39. Динамикам материальной точки. Основные законы динамики:
- •40. Две задачи динамики материальной точки. Несвободная материальная точка:
- •42. Динамика криволин-ого дв-ия материальной точки:
- •43. Несвободное движение точки. Уравнение движения точки по заданной неподвижной кривой:
- •44. Динамика относ-ого движения точки. Частные случаи:
- •46. Теорема об изменении количества движения материальной точки:
- •47. Моменты количества движения точки относительно произвольного центра и оси:
- •48. Теорема об изменении момента количества движения материальной точки:
- •49. Работа силы. Мощность:
- •50. Примеры вычисления работы силы (работа сил тяжести, упругости пружины, трения):
- •51. Теорема об изменении кинетической энергии материальной точки:
- •52. Принцип д'Аламбера для материальной точки:
- •53. Понятие механической системы (системы материальных точек). Внешние и внутренние силы:
- •54. Масса механической системы. Центр масс механической системы:
- •57. Дифференциальные уравнения движения механической системы:
- •58 Теорема о движении центра масс механической системы. Закон сохранения движения центра масс:
- •59. Количество движения механической системы. Главный вектор количества движения:
- •60. Теорема об изменении количества движения механической системы. Закон сохранения количества движения механической системы:
- •61. Кинет-ий момент мех-ой системы относ-но центра и оси:
- •62. Кинет-ий момент абс-но тв-ого тела относ-но оси вращения:
- •63. Теорема об изменении кинет-ого моменты мех-ой системы. Закон сохр-ия кинет-ого моменты мех-ой системы:
- •64. Теорема о кинет-ой энергии мех-ой системы в общем случае её дв-ия (теорема Кенига):
- •65. Кинет-ая энергия тел при различных видах их движения:
- •71. Принцип д Аламбера для мех-ой системы:
- •72. Главный вектор и главный момент сил инерции мех-ой системы:
- •73. Возможное перемещение механической системы. Число степеней свободы:
- •74. Принцип возможных перемещений:
- •76. Голономные и неголономные связи, Обобщенные координаты, скорости и силы:
- •77. Диференциальное уравнение Лагранжа 2-го рода:
- •Из другого источника:
- •60. Закон сохранения кол-ва Движения мех. Системы
- •51. Теорема об изменении кинетической энергии мат точки и механической системы в диффер и конечной формах.
38. Методика расчета равновесия тела при сходящихся и произвольных силах:
1. Геометрическое условие равновесия.
Так как главный вектор R системы сил определяется как
замыкающая сторона силового многоугольника, построенного из этих сил то R может обратиться в нуль только тогда, когда конец последней силы в многоугольнике совпадает с началом первой силы, т. е. когда многоугольник замкнется.
Следовательно, для равновесия системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнутым.
2. Аналитические условия равновесия.
Аналитически
модуль главного вектора системы сил
определяется формулой
Так как под корнем стоит сумма положительных слагаемых, то R обратится в нуль только тогда, когда одновременно Rx=0, Ry=0, Rz=0, т. е., как это следует из формул когда действующие на тело силы будут удовлетворять равенствам:
Равенства выражают условия равновесия в аналитической форме: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю. Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил. В случае плоской системы сходящихся сил получим, очевидно, только два условия равновесия.
39. Динамикам материальной точки. Основные законы динамики:
Первый закон (закон инерции): изолированная от внешних воздействий материальная точка сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, пока приложенные силы не заставят ее изменить это состояние. Движение, совершаемое точкой при отсутствии сил, называется движением по инерции.
Второй закон (основной закон динамики) устанавливает, как изменяется скорость точки при действии на нее какой-нибудь силы, а именно: произведение массы материальной точки на ускорение, которое она получает под действием данной силы, равно по модулю этой силе, а направление ускорения совпадает с направлением силы.
Математически
этот закон выражается векторным
равенством
При этом между
модулями ускорения и силы имеет место
зависимость
Второй закон
динамики, как и первый, имеет место
только по отношению к инерциальной
системе отсчета. Из этого закона
непосредственно видно, что мерой
инертности материальной точки является
ее масса, поскольку при действии данной
силы точка, масса которой больше, т. е.
более инертная, получит меньшее ускорение
и наоборот. Если на точку действует
одновременно несколько сил, то они, как
это следует из закона параллелограмма
сил, будут эквивалентны одной силе, т.
е. равнодействующей. равной геометрической
сумме данных сил. Уравнение, выражающее
основной закон динамики, принимает в
этом случае вид
Этот же результат можно получить, используя вместо закона параллелограмма закон независимости действия сил, согласно которому при одновременном действии на точку нескольких сил каждая из них сообщает точке такое же ускорение, какое она сообщила бы, действуя одна.
Третий закон (закон равенства действия и противодействия) устанавливает характер механического взаимодействия между материальными телами. Для двух материальных точек он гласит:
две материальные точки действуют друг на друга с силами, равными по модулю и направленными вдоль прямой, соединяющей эти точки, в противоположные стороны.