
- •1. Кинематика. Кинематика точки. Способы задания движения точки:
- •2. Скорость точки. Вектор скорости:
- •3. Ускорение точки. Вектор ускорения:
- •4. Опред-ие ск-ти и уск-ия точки при коор-ом способе задания дв-ия:
- •5. Опред-ие ск-ти и уск-ия точки при естественном способе задания дв-ия:
- •9. Равномерное и равнопеременное вращение:
- •10. Скорости и ускорения точек тела при вращательном движении:
- •11. Выражения скоростей и ускорений точек тела при вращательном движении в виде векторных произведений:
- •12. Плоскопараллельное движение твёрдого тела. Уравнение плоского движения. Разложение плоского движения на поступательное и вращательное:
- •13. Определение скоростей тела при плоском движении:
- •14. Теорема о проекциях скоростей двух точек тела:
- •15. Мгновенный центр скоростей. Теорема о существовании и единстве м.Ц.С.:
- •16. Определение скоростей точек тела с помощью м.Ц.С.:
- •17. Частные случаи определения м.Ц.С:
- •18. Опред-ие уск-ий точек тела при плоском движении:
- •19. М.Ц.У. Опред-ие ускорений точек тела с помощью м.Ц.С.:
- •20. Сферическое дв-ие тв-ого тела. Эйлеровы углы. Ур-ия сферического дв-ия:
- •21. Теорема Эйлера-Даламбера:
- •22. Мгновенная ось вращения. Мгновенные угловая ск-ть и угловое уск-ие тела при сферическом дв-ии:
- •25. Формула Пуассона:
- •26. Общий случай движения свободного твердого тела:
- •27. Абсолютное, относительное и переносное движение точки:
- •28. Сложение скоростей при сложном движении точки:
- •29. Сложение ускорений при сложном движении точки. Случай поступательного переносного движения:
- •30. Теорема Кориолиса. Ускорение Кориолиса:
- •31. Опред-ние направления и модуля ускорения Кориолиса. Случаи, когда ускорение Кориолиса равно нулю:
- •32. Сложное дв-ие твёрдого тела. Сложение поступательных движений:
- •36. Кинетические уравнения Эйлера:
- •37. Сложение поступательного и вращательного движений (векторы Vz и Vc направлены под любым углом друг к другу):
- •38. Методика расчета равновесия тела при сходящихся и произвольных силах:
- •1. Геометрическое условие равновесия.
- •2. Аналитические условия равновесия.
- •39. Динамикам материальной точки. Основные законы динамики:
- •40. Две задачи динамики материальной точки. Несвободная материальная точка:
- •42. Динамика криволин-ого дв-ия материальной точки:
- •43. Несвободное движение точки. Уравнение движения точки по заданной неподвижной кривой:
- •44. Динамика относ-ого движения точки. Частные случаи:
- •46. Теорема об изменении количества движения материальной точки:
- •47. Моменты количества движения точки относительно произвольного центра и оси:
- •48. Теорема об изменении момента количества движения материальной точки:
- •49. Работа силы. Мощность:
- •50. Примеры вычисления работы силы (работа сил тяжести, упругости пружины, трения):
- •51. Теорема об изменении кинетической энергии материальной точки:
- •52. Принцип д'Аламбера для материальной точки:
- •53. Понятие механической системы (системы материальных точек). Внешние и внутренние силы:
- •54. Масса механической системы. Центр масс механической системы:
- •57. Дифференциальные уравнения движения механической системы:
- •58 Теорема о движении центра масс механической системы. Закон сохранения движения центра масс:
- •59. Количество движения механической системы. Главный вектор количества движения:
- •60. Теорема об изменении количества движения механической системы. Закон сохранения количества движения механической системы:
- •61. Кинет-ий момент мех-ой системы относ-но центра и оси:
- •62. Кинет-ий момент абс-но тв-ого тела относ-но оси вращения:
- •63. Теорема об изменении кинет-ого моменты мех-ой системы. Закон сохр-ия кинет-ого моменты мех-ой системы:
- •64. Теорема о кинет-ой энергии мех-ой системы в общем случае её дв-ия (теорема Кенига):
- •65. Кинет-ая энергия тел при различных видах их движения:
- •71. Принцип д Аламбера для мех-ой системы:
- •72. Главный вектор и главный момент сил инерции мех-ой системы:
- •73. Возможное перемещение механической системы. Число степеней свободы:
- •74. Принцип возможных перемещений:
- •76. Голономные и неголономные связи, Обобщенные координаты, скорости и силы:
- •77. Диференциальное уравнение Лагранжа 2-го рода:
- •Из другого источника:
- •60. Закон сохранения кол-ва Движения мех. Системы
- •51. Теорема об изменении кинетической энергии мат точки и механической системы в диффер и конечной формах.
18. Опред-ие уск-ий точек тела при плоском движении:
Ускорение любой точки тела в плоском движении равно геометрической сумме ускорения точки тела в поступательном движении совместно с полюсом и ускорения вращения точки вокруг полюса во вращательном движении тела вокруг полюса.
Дифференцируя по времени выражение (2), получаем
В
последнем выражении вектор углового
ускорения тела ε направлен по оси
вращения тела, совпадающей с осями Az* и
Az1 , так как при плоском движении вект
ор ω не
изменяет своего направления в пространстве,
двигаясь параллельно самому себе. То
есть распределение ускорений в базовой
системе координат такое же, как и при
вращении тела вокруг неподвижной оси.
На рис. показан случай, когда ускоренное
вращение происходит против хода часов,
а остальные оси базовой и связанной с
телом систем координат не показаны.
Очевидно, что aА
является ускорением полюса или ускорением
поступательного движения базовой
системы координат и тела совместно с
полюсом. Согласно векторным формулам
для ускорений точек тела при вращательном
движении вектор касательного ускорение
вращения вокруг полюса равен
он перпендикулярен радиусу вращения
AB и направлен в сторону углового
ускорения, а его величина равна
Вектор нормального ускорения равен
он направлен по радиусу вращения AB от
точки B к полюсу A, а его величина равна
При
вычислении величин векторов в формулах
учитывалось, что векторы ρ и VBA лежат в
плоскости движения, а векторы ω и ε
перпендикулярны ей (рис.88).
Подставляя
формулы в выражение для a.в
, получаем
и теорема доказана.
19. М.Ц.У. Опред-ие ускорений точек тела с помощью м.Ц.С.:
Мгновенный центр ускорений - при непоступательном движении точка, находящаяся в плоскости движения тела, ускорение которой в данный момент времени равно нулю.
Положение мгновенного центра ускорений в общем случае не совпадает с положением мгновенного центра скоростей. Однако в некоторых случаях, например, при чисто вращательном движении, положение этих двух точек может совпадать.
Для того, чтобы определить положение мгновенного центра ускорений, необходимо к векторам ускорений двух различных точек тела провести прямые под равными углами μ. В точке пересечения проведённых прямых и будет находиться мгновенный центр ускорений. Угол μ должен удовлетворять равенству:
где
ε - угловое ускорение тела;
ω - угловая скорость тела.
20. Сферическое дв-ие тв-ого тела. Эйлеровы углы. Ур-ия сферического дв-ия:
Сферическим движением (движением тела с одной закрепленной точкой) называется такое движение тела, при котором одна его точка О остается неподвижной во все время движения. Все остальные точки тела движутся при этом по траекториям, расположенным на поверхности сфер с центром в неподвижной точке О. Положение тела определяется углами Эйлера (рис. 1): углом прецессии φ, углом нутации θ и углом собственного вращения φ. Эти углы характеризуют положение координатного трехгранника осей Oξηζ, связанного с телом, по отношению к неподвижному трехграннику Oxyz. Линия ON пересечения координатных плоскостей Оху и Oξη называется линией узлов.
Уравнения сферического движения:
Э́йлеровы углы́ - углы φ, Ψ, θ (рис.), определяющие положение прямоугольной системы координат Oxyz относительно другой прямоугольной системы координат Ox1 y1 z1 с той же ориентацией. Введены Л. Эйлером (1748); применяются в механике.