
- •1. Кинематика. Кинематика точки. Способы задания движения точки:
- •2. Скорость точки. Вектор скорости:
- •3. Ускорение точки. Вектор ускорения:
- •4. Опред-ие ск-ти и уск-ия точки при коор-ом способе задания дв-ия:
- •5. Опред-ие ск-ти и уск-ия точки при естественном способе задания дв-ия:
- •9. Равномерное и равнопеременное вращение:
- •10. Скорости и ускорения точек тела при вращательном движении:
- •11. Выражения скоростей и ускорений точек тела при вращательном движении в виде векторных произведений:
- •12. Плоскопараллельное движение твёрдого тела. Уравнение плоского движения. Разложение плоского движения на поступательное и вращательное:
- •13. Определение скоростей тела при плоском движении:
- •14. Теорема о проекциях скоростей двух точек тела:
- •15. Мгновенный центр скоростей. Теорема о существовании и единстве м.Ц.С.:
- •16. Определение скоростей точек тела с помощью м.Ц.С.:
- •17. Частные случаи определения м.Ц.С:
- •18. Опред-ие уск-ий точек тела при плоском движении:
- •19. М.Ц.У. Опред-ие ускорений точек тела с помощью м.Ц.С.:
- •20. Сферическое дв-ие тв-ого тела. Эйлеровы углы. Ур-ия сферического дв-ия:
- •21. Теорема Эйлера-Даламбера:
- •22. Мгновенная ось вращения. Мгновенные угловая ск-ть и угловое уск-ие тела при сферическом дв-ии:
- •25. Формула Пуассона:
- •26. Общий случай движения свободного твердого тела:
- •27. Абсолютное, относительное и переносное движение точки:
- •28. Сложение скоростей при сложном движении точки:
- •29. Сложение ускорений при сложном движении точки. Случай поступательного переносного движения:
- •30. Теорема Кориолиса. Ускорение Кориолиса:
- •31. Опред-ние направления и модуля ускорения Кориолиса. Случаи, когда ускорение Кориолиса равно нулю:
- •32. Сложное дв-ие твёрдого тела. Сложение поступательных движений:
- •36. Кинетические уравнения Эйлера:
- •37. Сложение поступательного и вращательного движений (векторы Vz и Vc направлены под любым углом друг к другу):
- •38. Методика расчета равновесия тела при сходящихся и произвольных силах:
- •1. Геометрическое условие равновесия.
- •2. Аналитические условия равновесия.
- •39. Динамикам материальной точки. Основные законы динамики:
- •40. Две задачи динамики материальной точки. Несвободная материальная точка:
- •42. Динамика криволин-ого дв-ия материальной точки:
- •43. Несвободное движение точки. Уравнение движения точки по заданной неподвижной кривой:
- •44. Динамика относ-ого движения точки. Частные случаи:
- •46. Теорема об изменении количества движения материальной точки:
- •47. Моменты количества движения точки относительно произвольного центра и оси:
- •48. Теорема об изменении момента количества движения материальной точки:
- •49. Работа силы. Мощность:
- •50. Примеры вычисления работы силы (работа сил тяжести, упругости пружины, трения):
- •51. Теорема об изменении кинетической энергии материальной точки:
- •52. Принцип д'Аламбера для материальной точки:
- •53. Понятие механической системы (системы материальных точек). Внешние и внутренние силы:
- •54. Масса механической системы. Центр масс механической системы:
- •57. Дифференциальные уравнения движения механической системы:
- •58 Теорема о движении центра масс механической системы. Закон сохранения движения центра масс:
- •59. Количество движения механической системы. Главный вектор количества движения:
- •60. Теорема об изменении количества движения механической системы. Закон сохранения количества движения механической системы:
- •61. Кинет-ий момент мех-ой системы относ-но центра и оси:
- •62. Кинет-ий момент абс-но тв-ого тела относ-но оси вращения:
- •63. Теорема об изменении кинет-ого моменты мех-ой системы. Закон сохр-ия кинет-ого моменты мех-ой системы:
- •64. Теорема о кинет-ой энергии мех-ой системы в общем случае её дв-ия (теорема Кенига):
- •65. Кинет-ая энергия тел при различных видах их движения:
- •71. Принцип д Аламбера для мех-ой системы:
- •72. Главный вектор и главный момент сил инерции мех-ой системы:
- •73. Возможное перемещение механической системы. Число степеней свободы:
- •74. Принцип возможных перемещений:
- •76. Голономные и неголономные связи, Обобщенные координаты, скорости и силы:
- •77. Диференциальное уравнение Лагранжа 2-го рода:
- •Из другого источника:
- •60. Закон сохранения кол-ва Движения мех. Системы
- •51. Теорема об изменении кинетической энергии мат точки и механической системы в диффер и конечной формах.
61. Кинет-ий момент мех-ой системы относ-но центра и оси:
2)Кинетический момент механической системы относительно центра и оси. Кинетический момент твёрдого тела вращающегося относительно оси.
1)Для решения этой задачи целесообразно воспользоваться дифф.ур-ми мат.точки в виде:
Поскольку действие силы известны, то => известны и правые части этих ур-й. Интегрирование их дважды по времени приводит их к 3-м ур-м содержащим 6 произвольным постонным:
Значе ния этих постоянных могут быть просто найдены с помощью нач.усл., т.е. если известно:
Подставив найденные значения в постоянные интегрирования в общее решение дифф-х ур-й получили закон движения точки:
Отсюда => , что мат.точка под действием одной и той же силы может совершать целый класс движений определённый начальными условиями.
Например: движения свободной мат.точки под силами тяжести – семейств кривых 2-го порядка.
Начальные условия позволяют учесть влияние на движение мат.точки сил дейсвовавших на неё до того момента, который принят за начальный.
2)Закон сохранения кинетического момента механической системы:
1)Если сумма моментов относительно данного центра всех внешних сил = 0, то кинетический момент механической системы сохраняет модуль и направление в пространстве
2)Если сумма моментов всех действующих на систему внешних сил относительно некоторой оси = 0, то кинетический момент механической системы относительно этой оси есть величина постоянная.
Частные случаи:
Система вращается вокруг неподвижной оси в этом случае кинетический момент механической системы = 0
,и если сумма моментов относительно этой оси равна нулю, то
62. Кинет-ий момент абс-но тв-ого тела относ-но оси вращения:
Любое движение твердого тела можно представить как сумму двух движений: поступательного движения со скоростью центра масс тела и вращения относительно оси, проходящей через центр масс. Примером может служить колесо, которое катится без проскальзывания по горизонтальной поверхности (рис. 1.23.4). При качении колеса все его точки движутся в плоскостях, параллельных плоскости рисунка. Такое движение называется плоским. При плоском движении кинетическая энергия движущегося твердого тела равна сумме кинетической энергии поступательного движения и кинетической энергии вращения относительно оси, проходящей через центр масс тела и перпендикулярной плоскостям, в которых движутся все точки тела:
где m – полная масса тела, IC – момент инерции тела относительно оси, проходящей через центр масс.
Рисунок 1.23.4.Качение колеса как сумма поступательного движения со скоростью и вращения с угловой скоростью относительно оси O, проходящей через центр масс.
В механике доказывается теорема о движении центра масс: под действием внешних сил центр масс любого тела или системы взаимодействующих тел движется как материальная точка, в которой сосредоточена вся масса системы.
Иллюстрацией этого утверждения может служить рис. 1.23.5, на котором изображено движение тела под действием силы тяжести. Центр масс тела движется по параболической траектории как материальная точка, в то время как все другие точки движутся по более сложным траекториям.
Рисунок 1.23.5.Движение твердого тела под действием силы тяжести.
Если твердое тело вращается относительно некоторой неподвижной оси, то его момент инерции I можно выразить через момент инерции IC этого тела относительно оси, проходящей через центр масс тела и параллельной первой.
Рисунок 1.23.6.К доказательству теоремы о параллельном переносе оси вращения.
Рассмотрим сечение твердого тела произвольной формы, изображенное на рис. 1.23.6. Выберем координатную систему XY с началом координат O в центре масс C тела. Пусть одна из осей вращения проходит через центр масс C, а другая через произвольную точку P, расположенную на расстоянии d от начала координат. Обе оси перпендикулярны плоскости чертежа. Пусть Δmi – некоторый малый элемент массы твердого тела. По определению момента инерции:
Выражение для IP
можно переписать в виде: