
- •1. Структура и принцип действия микропроцессора классической архитектуры
- •2. Выполнение процессором командного цикла.
- •3. Командный и машинный циклы.
- •4. Внутренние регистры микроконтроллера msp430. Регистры общего назначения и регистры специальных функций
- •5. Микросхемы памяти, их основные характеристики и классификация
- •6. Функциональная схема устройства оперативной памяти
- •7. Постоянные запоминающие устройства, их типы и области применения
- •8. Применение пзу в качестве программируемого логического устройства.
- •9. Применение пзу в качестве функционального преобразователя (фп).
- •10. Структура команд. Способы адресации.
- •11. Применение косвенной адресации
- •12. Команды процессора и эмулируемые команды
- •13. Организация подпрограмм и использование стековой области памяти.
- •14. Программная реализация интервалов времени
- •15. Аппаратный умножитель и его применение
- •16. Виды операции умножения
- •17. Применение умножения с накоплением при расчете сигналов управления
- •18. Аппаратные и программные средства интрфейса.
- •19. Принципы обмена информацией.
- •20. Параллельный и последовательный интерфейс.
- •21. Принцип действия программируемого таймера.
- •23.Организация прямого доступа к памяти.
- •24. Аппаратная реализация интервалов времени
- •25. Цифро-аналоговое преобразование.
- •26. Аналого-цифровое преобразование.
- •27. Микроконтроллер как динамическое звено.
- •28. Влияние времени выполнения программы мк запас устойчивости замкнутой системы.
- •29. Выбор числа разрядов слова данных по требуемой точности системы управления.
- •30. Рекурсивные и нерекурсивные цифровые фильтры, их передаточные функции и структурные схемы.
- •31. Цифровое дифференцирование и интегрирование.
- •34. Параллельная обработка информации. Классификация вычислительных систем с параллельной обработкой информации.
- •35. Процессоры с сокращенным набором команд (risc) и с полным набором команд (cisc).
- •36. Гарвардская и разнесенная архитектуры микропроцессоров
- •37. Процессоры с длинным командным словом
- •38. Синтез процессорной матрицы.
- •39. Применение процессорной матрицы для цифровой фильтрации сигнала.
- •40. Общая характеристика системы команд мсs8 х с51.
- •41. Функциональная схема микроконтроллера мсs8 х с51 и назначение входящих в него устройств.
- •42. Функциональная схема микроконтроллера мсs8 х с196 и назначение входящих в него устройств.
- •43. Регистры мсs 196 и способы адресации. Система команд мсs 196.
- •44. Архитектура микроконтроллеров adsp-bf и общая характеристика системы команд.
- •45. Структура ядра adsp-bf и его регистры.
- •46. Архитектура микроконтроллеров tms 320
- •47. Алгоритм расчета сигнала управления в замкнутой сис-ме
- •48. Преобразование унитарного кода импульсн.Датчика в двоичный код положения
- •49. Преобразование унитарного кода импульсного датчика в двоичный код скорости.
- •51. Использование нечеткой логики для синтеза управления. Лингвист. Переменные.
- •5 2. Алгоритм нечеткого управления
- •53. Структура и принцип действия искусственного нейрона. Соединение в сеть.
- •54. Методы обучения искусственной нейронной сети.
- •55. Применение искусственной нейронной сети в качестве устройства управления.
- •56. Применения генетических алгоритмов для оптимизации управления эп
- •57. Функциональная схема msp 430, способы адресации, система команд, назначение входящих в него устройств
- •58. Архитектура risc-ядра arm7 16/32 разрядных микроконтроллеров
- •59. Последовательный интерфейс spi микроконтроллеров.
- •62. Применение шим для цап.
- •63. Способы повышения эффективности использования конвейеров
- •64. Принцип действия сигма-дельта ацп
- •65. Микроконтроллер, его ф-ная схема и применение в системах управления эп
- •66. Режим энергопотребления мк
- •67. Режимы работы таймеров.
- •68. Как таймер формирует шим
- •69. Режим захвата и сравнения.
36. Гарвардская и разнесенная архитектуры микропроцессоров
Архитектурой вычислительного устройства называют совокупность свойств и характеристик, определяющих модель вычислительного устройства с точки зрения пользователя: программно доступные регистры, разрядность слова, система команд, адресное пространство, схема обработки прерываний, способы адресации, быстродействие.
Архитектура – это логическая организация вычислительного устройства с точки зрения пользователя, определяющая возможности устройства.
Развитие архитектуры увеличивает производительность за счет рациональной системы команд, экономии времени при обращении к памяти, улучшения использования вычислительных ресурсов процессора: АЛУ, регистров, магистрали. Одним из способов повышения производительности – параллельная обработка информации, означающая одновременное выполнение не зависимых друг от друга операций различными устройствами.
Гарвардская архитектура микропроцессоров предлагает наличие отдельных устройств памяти для команд и данных. Преимущество такой организации памяти отражается в структуре команд, упрощая адресную часть. Кроме того, выборка команд может происходить одновременно с выборкой данных.
Степень интеграции – количество элементов в одном кристалле или на одном чипе.
Проектной нормой называют размер одного транзистора интегральной микросхемы. Увеличение степени интеграции и уменьшение проектной нормы приводит к увеличению тактовой частоты. Совершенствование архитектуры микропроцессора приводит к усовершенствованию без повышения тактовой частоты.
37. Процессоры с длинным командным словом
В процессорах с длинным командным словом (Very Long Instruction Word) использу- ется альтернативный суперскалярной обработке принцип распараллеливания по- следовательного алгоритма. В основном вся тяжесть планирования загрузки большого числа исполнительных устройств в таком процессоре (а у него блочное операцион- ное устройство) ложится на программиста, или - на оптимизирующий компилятор. В процессор поступают уже сформированные триады для всех исполнительных устройств, так что ему только остается выполнять эти длинные команды. В результате он не огра- ничен размером окна исполнения, так как и программист, и компилятор видят весь код программы, и могут извлечь из него максимальный параллелизм. Такой подход позволяет достичь принципиально более высокой производительности (например, тестирование процессоров Itanium с архитектурой IA-64, использующей прин- ципы VLIW, указывает на 10-кратное ускорение при выполнении ряда вычислений), но такие процессоры обладают и рядом недостатков: - в целом менее эффективная загрузка исполнительных устройств, так как не всегда можно сформировать достаточное количество команд для параллельного исполнения; - сложности обработки условных переходов; - сложность программирования и др. Последнее обстоятельство ограничивает применение процессоров VLIW, даже Intel, в персональных ЭВМ, так как для этого придется кардинально переписывать все программ- ное обеспечение, поскольку в существующем виде оно не даст прироста производитель- ности на этих процессорах. Сфера применения VLIW-процессоров пока ограничена сер- верами, производительными рабочими станциями, а также многопроцессорными ЭВМ. Что касается обработки условных переходов, то тут можно отметить широкое исполь- зование в процессорах VLIW так называемых условных (conditional) команд. Это коман- ды, использующие предварительно рассчитанные логические значения (предикаты), для выполнения, либо пропуска какого-то действия (наподобие операторов языков высокого уровня c := iif (a>b, a, c)), что позволяет избавиться от нескольких ветвей при коротких условных переходах и использовать один поток команд без необходимости предсказывать адрес для следующей выборки.