
- •1. Структура и принцип действия микропроцессора классической архитектуры
- •2. Выполнение процессором командного цикла.
- •3. Командный и машинный циклы.
- •4. Внутренние регистры микроконтроллера msp430. Регистры общего назначения и регистры специальных функций
- •5. Микросхемы памяти, их основные характеристики и классификация
- •6. Функциональная схема устройства оперативной памяти
- •7. Постоянные запоминающие устройства, их типы и области применения
- •8. Применение пзу в качестве программируемого логического устройства.
- •9. Применение пзу в качестве функционального преобразователя (фп).
- •10. Структура команд. Способы адресации.
- •11. Применение косвенной адресации
- •12. Команды процессора и эмулируемые команды
- •13. Организация подпрограмм и использование стековой области памяти.
- •14. Программная реализация интервалов времени
- •15. Аппаратный умножитель и его применение
- •16. Виды операции умножения
- •17. Применение умножения с накоплением при расчете сигналов управления
- •18. Аппаратные и программные средства интрфейса.
- •19. Принципы обмена информацией.
- •20. Параллельный и последовательный интерфейс.
- •21. Принцип действия программируемого таймера.
- •23.Организация прямого доступа к памяти.
- •24. Аппаратная реализация интервалов времени
- •25. Цифро-аналоговое преобразование.
- •26. Аналого-цифровое преобразование.
- •27. Микроконтроллер как динамическое звено.
- •28. Влияние времени выполнения программы мк запас устойчивости замкнутой системы.
- •29. Выбор числа разрядов слова данных по требуемой точности системы управления.
- •30. Рекурсивные и нерекурсивные цифровые фильтры, их передаточные функции и структурные схемы.
- •31. Цифровое дифференцирование и интегрирование.
- •34. Параллельная обработка информации. Классификация вычислительных систем с параллельной обработкой информации.
- •35. Процессоры с сокращенным набором команд (risc) и с полным набором команд (cisc).
- •36. Гарвардская и разнесенная архитектуры микропроцессоров
- •37. Процессоры с длинным командным словом
- •38. Синтез процессорной матрицы.
- •39. Применение процессорной матрицы для цифровой фильтрации сигнала.
- •40. Общая характеристика системы команд мсs8 х с51.
- •41. Функциональная схема микроконтроллера мсs8 х с51 и назначение входящих в него устройств.
- •42. Функциональная схема микроконтроллера мсs8 х с196 и назначение входящих в него устройств.
- •43. Регистры мсs 196 и способы адресации. Система команд мсs 196.
- •44. Архитектура микроконтроллеров adsp-bf и общая характеристика системы команд.
- •45. Структура ядра adsp-bf и его регистры.
- •46. Архитектура микроконтроллеров tms 320
- •47. Алгоритм расчета сигнала управления в замкнутой сис-ме
- •48. Преобразование унитарного кода импульсн.Датчика в двоичный код положения
- •49. Преобразование унитарного кода импульсного датчика в двоичный код скорости.
- •51. Использование нечеткой логики для синтеза управления. Лингвист. Переменные.
- •5 2. Алгоритм нечеткого управления
- •53. Структура и принцип действия искусственного нейрона. Соединение в сеть.
- •54. Методы обучения искусственной нейронной сети.
- •55. Применение искусственной нейронной сети в качестве устройства управления.
- •56. Применения генетических алгоритмов для оптимизации управления эп
- •57. Функциональная схема msp 430, способы адресации, система команд, назначение входящих в него устройств
- •58. Архитектура risc-ядра arm7 16/32 разрядных микроконтроллеров
- •59. Последовательный интерфейс spi микроконтроллеров.
- •62. Применение шим для цап.
- •63. Способы повышения эффективности использования конвейеров
- •64. Принцип действия сигма-дельта ацп
- •65. Микроконтроллер, его ф-ная схема и применение в системах управления эп
- •66. Режим энергопотребления мк
- •67. Режимы работы таймеров.
- •68. Как таймер формирует шим
- •69. Режим захвата и сравнения.
35. Процессоры с сокращенным набором команд (risc) и с полным набором команд (cisc).
RISC - Это концепция проектирования процессоров, которая во главу ставит следующий принцип: более компактные и простые инструкции выполняются быстрее.
Первые RISC-процессоры были разработаны в начале 1980-х годов в Стэнфордском и Калифорнийском университетах США. Они выполняли небольшой (50−100) набор команд, тогда как обычные CISC (Complex Instruction Set computer) выполняли 100—200.
Характерные особенности RISC-процессоров:
1 Фиксированная длина машинных инструкций (например, 32 бита) и простой формат команды.
2 Специализированные команды для операций с памятью — чтения или записи. Операции вида «прочитать-изменить-записать» отсутствуют. Любые операции "изменить" выполняются только над содержимым регистров (т.н. load-and-store архитектура).
3 Большое количество регистров общего назначения (32 и более).
4 Отсутствие микропрограмм внутри самого процессора. То, что в CISC процессоре исполняется микропрограммами, в RISC процессоре исполняется как обыкновенный (хотя и помещенный в специальное хранилище) машинный код, не отличающийся принципиально от кода ядра ОС и приложений.
5 Для обращения имеется во внешней памяти несколько команд
6 Аппаратное исполнение многих операций.
7 Суперскалярные архитектуры (Распараллеливание исполнения команд между несколькими устройствами исполнения, причем решение о параллельном исполнении двух или более команд принимается аппаратурой процессора на этапе исполнения)
8 конвейерный порядок выполнения команд
Недостатки:
1) не дает желаемого эффекта, если выполняемая программа содержит много ветвлений
2)при организации прерываний работа конвейеров становится менее эффективной.
В настоящее время многие архитектуры процессоров являются RISC-подобными, к примеру, ARM, DEC Alpha, SPARC, AVR, MIPS, POWER и PowerPC. Наиболее широко используемые в настольных компьютерах процессоры архитектуры x86 ранее являлись CISC-процессорами, однако новые процессоры, начиная с Intel486DX, являются CISC-процессорами с RISC-ядром. Они непосредственно перед исполнением преобразуют CISC-инструкции процессоров x86 в более простой набор внутренних инструкций RISC.
CISC (англ. Complex Instruction Set Computing) — концепция проектирования процессоров, которая характеризуется следующим набором свойств:
Нефиксированным значением длины команды.
Арифметические действия, кодируется в одной инструкции.
Небольшим числом регистров, каждый из которых выполняет строго определённую функцию.
большое количество методов адресации;
большое количество форматов команд различной разрядности;
преобладание двухадресного формата команд; наличие команд обработки типа регистр-память.
Лидером в разработке микропроцессоров c полным набором команд (CISC - Complete Instruction Set Computer) считается компания Intel со своей серией x86 и Pentium. Эта архитектура является практическим стандартом для рынка микрокомпьютеров.
(исключая современные Intel Pentium 4, Pentium D, Core, AMD Athlon, Phenom, которые являются гибридными) и процессоры Motorola MC680x0.