Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теор. мех. ответы полный.docx
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
1.72 Mб
Скачать

2.4. Составление дифференциальных уравнений движения консервативных систем

Чтобы получить искомые уравнения для консервативной системы, нужно вначале записать функцию Лагранжа = T – П, затем подставить L в уравнения (2.1). При дифференцировании функции L следует принять во внимание все замечания, относящиеся к дифференцированию функций T в подразд. 1.6.

Далее предлагается самостоятельно сформировать функцию Лагранжа L для системы на рис. 2.1, подставить эту функцию в уравнение Лагранжа (2.1) и убедиться, что полученные этим способом дифференциальные уравнения движения совпадают с уравнениями для той же системы из подразд. 1.6 (пример 1.12).

При решении задач в некоторых случаях может получиться, что одна какая-либо обобщенная координата qi системы не входит явно в функцию Лагранжа L. Тогда будем иметь . Соответствующее этой координате уравнение Лагранжа в (2.1) имеет вид

.

Из этого следует, что

. (2.4)

Выражение (2.4) называют циклическим интегралом, а координату qi – циклической координатой. Наличие циклического интеграла существенно упрощает решение задачи.

2.5. Методика решения задач с помощью уравнений Лагранжа для консервативных систем

  • Проверить, действительно ли консервативна рассматриваемая система (подразд. 2.2).

  • Определить число степеней свободы системы и выбрать ее обобщенные координаты (подразд. 1.2 и 1.3).

  • Записать выражение кинетической энергии системы в обобщенных координатах (подразд. 1.5).

  • Составить выражение потенциальной энергии системы (подразд. 2.3).

  • Составить дифференциальные уравнения движения системы (подразд. 2.4).

  • Решая полученную систему дифференциальных уравнений, определить искомые величины.

При решении задач надо учитывать замечания, сделанные в подразд. 1.1.

Задача 2.1. Система на рис. 2.3 состоит из призмы A весом 2P и соединенного с ней шарниром тонкого однородного стержня AB весом P и длиной . При движении системы стержень колеблется в вертикальной плоскости, призма A движется вдоль оси x. Пренебрегая сопротивлением движению, составить дифференциальные уравнения движения этой системы и затем найти зависимость между скоростью призмы и угловой скоростью стержня, если в начальный момент .

Активные силы – силы тяжести призмы и стержня. Поэтому согласно подразд. 2.2 система консервативна.

Система на рис. 2.3 имеет две степени свободы, так как для ее остановки нужно закрепить сначала призму, движущуюся прямолинейно, а затем стержень, вращающийся вокруг оси A.

Положение статического равновесия системы обозначим M0, в этом положении стержень вертикален (рис. 2.4).

Рис. 2.3 Рис. 2.4

В качестве обобщенных координат возьмем величины x и . Эти координаты в положении M0 равны нулю.

Определим кинетическую энергию системы = TA + TAB.

По формулам (2) и (4) прил. 2

Выразим VA, AB и VC через обобщенные скорости и : из анализа рис. 2.4 следует, что , где ; далее по формуле, определяющей диагональ параллелограмма, находим

.

Подставляя эти результаты в T и учитывая, что

,

получим

.

Определим потенциальную энергию системы на рис. 2.4. Для этого вычислим работу сил на перемещении системы из положения M в положение M0:

.

Далее согласно формуле (2.2) имеем

.

Для составления дифференциальных уравнений движения системы вначале найдем функцию Лагранжа

.

Обобщенная координата x не входит явно в L: она является циклической. Ей соответствует циклический интеграл (2.4): или

. (а)

Это первое дифференциальное уравнение движения рассматриваемой системы. Из уравнения (а) при начальных условиях = 0 , получим

.

Это искомая зависимость между скоростью призмы и угловой скоростью стержня.

Для получения второго дифференциального уравнения движения системы найдем

Подставляя эти результаты в (2.1), получим

. (б)

Рис. 2.5

Уравнения (а) и (б) являются искомыми дифференциальными уравнениями движения рассматриваемой системы.

Далее предлагается самостоятельно решить задачи 2.2 и 2.3.

Задача 2.2. Блок D подвешен к нижнему концу вертикальной пружины, верхний конец которой неподвижен (рис. 2.5). Коэффициент жесткости пружины равен с. Через блок перекинута нерастяжимая нить с грузами А и В на концах, массы грузов соответственно равны m1 и m2. Выбирая за обобщенные координаты удлинение x пружины из положения статического равновесия и расстояние y груза А от оси блока, составить дифференциальные уравнения движения данной системы. Массой нити и блока пренебречь.

Ответ:

Задача 2.3. Составить дифференциальные уравнения движения системы на рис. 2.2, учитывая условия задачи, соответствующие этому рисунку (см. подразд. 2.3). Сопротивлением движению системы пренебречь. В качестве обобщенных координат взять углы 1 и 2.

Ответ:

*)*) Связи системы называются голономными, если их уравнения могут быть записаны в виде, не содержащем производные от координат по времени или дифференциалов координат.

**)**) Связи системы называются стационарными, если ограничения, накладываемые ими на положение тел и точек системы, не изменяются при движении.

41