Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы1.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
91.45 Кб
Скачать
  1. Опишите полупроводниковые приборы, их достоинства и недостатки.

Полупроводниковые приборы (ППП) — широкий класс электронных приборов, изготавливаемых из полупроводников.

К полупроводниковым приборам относятся:

Интегральные схемы (микросхемы)

Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),

Тиристоры, фототиристоры,

Транзисторы,

Приборы с зарядовой связью,

Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),

Оптоэлектронные приборы (фоторезисторы, фотодиоды, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели),

Терморезисторы, датчики Холла.

Преимуществом полупроводниковых приборов являются отсутствие подогревного элемента ( накала), малые габаритные размеры и вес, высокая виброустойчивость, высокий срок службы и др.

Недостатки полупроводниковых приборов.

Предстоящее широкое применение полупроводниковых приборов в самолетной и другой электронной аппаратуре, очевидно, и отмечаемые их преимущества, вероятно, будут даже еще больше. Однако в настоящее время вряд ли следует возлагать очень большие надежды на полупроводниковые приборы, закрывая в то же время глаза на свойственные им недостатки и трудности применения их в обычных схемах. Эти приборы еще не столь надежны и стабильны по своим параметрам, чтобы ими можно было заменить, например, высококачественные электронные лампы в усилителях подводного телефонного кабеля через Атлантический океан, средний срок службы которых оценивается, примерно, в 40 лет. Миниатюрность действительно одна из особенностей конструкции полупроводникового прибора, но она не относится к числу их решающих преимуществ. Компактность аппаратуры определяется не столько размерами электронных приборов, сколько объемом, определяемым всеми ее компонентами, а также блоком питания. Благодаря низким питающим напряжениям и небольшой мощности, потребляемой аппаратурой на полупроводниках, возможно применение малогабаритных радиодеталей и портативных источников питания. Именно этим определяется уменьшение габаритов аппаратуры, достигаемое при переходе на полупроводниковые приборы.

  1. Опишите виды примесей и проводимости в полупроводниках.

Электронные полупроводники (n-типа)

Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Дырочные полупроводники (р-типа)

Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

ВИДЫ проводимости

В современной электронике практическое применение имеют следующие полупроводники: германий, кремний, селен, окись меди и др. Вокруг ядра атома германия, содержащего 32 протона, на четырех оболочках находятся 32 электрона; расположенные на наружной оболочке 4 валентных электрона и определяют электропроводность германия. Схематически кристаллическая решетка

чистого германия представлена на рис. 69. Объединение атомов германия в кристаллическую решетку осуществляется при помощи ковалентных, или атомных, связей.

Вследствие теплового возбуждения происходит ионизация отдельных атомов кристаллической решетки, т. е. некоторые из валентных электронов становятся свободными, обусловливая электронную проводимость германия. В результате столкновений с ионами и атомами часть свободных электронов теряет энергию. Они возвращаются в валентную зону и занимают свое место в парноэлектронных связях. Одновременно с этим появляются новые свободные электроны. Наконец, устанавливается динами-чекое равновесие между освобождающимися электронами и возвращающимися в валентную зону.

В полупроводнике наряду с электроном имеет

место так называемая дырочная проводимость. После отрыва электрона от атома остается свободное место, которое называют дыркой. Валентный электрон соседнего нейтрального атома может перейти на притягивающий его атом с дыркой и заполнить освободившуюся связь. При этом дырка как бы «переходит» к соседнему атому. Если к полупроводнику не приложено внешнее электрическое поле, то дырки, так же как и свободные электроны зоны проводимости, перемещаются беспорядочно. Если полупроводник поместить в электрическое поле, то движение дырок становится направленным. Это направленное движение дырок от одного атома к другому соответствует движению положительных зарядов через полупроводник, а следовательно, и протеканию через полупроводник тока в направлении движения дырок. Проводимость полупроводника, вызванная движением дырок, называется дырочной или проводимостью типа ρ (от латинского слова positive — положительный), в отличие от проводимости типа n (от латинского слова negative — отрицательный), обусловленной движением электронов.

Проводимость, возникающая в полупроводнике вследствие нарушения валентных связей, называется собственной проводимостью.

Таким образом, проводимость полупроводника определяется как движением электронов в зоне проводимости, так и движением электронов в валентной зоне, однако принято считать, что в валентной зоне перемещаются не электроны, а дырки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]