
- •Содержание
- •1. Краеугольные камни фотоники (Nature milestones).
- •1948 Г. Появление голографии
- •1960. Создание лазера
- •1961. Создание нелинейной оптики.
- •Неравенства Белла
- •Фотонный кристалл
- •Плазмон-поляритоны
- •Зеркальный блеск или как обеспечить обратную связь?
- •2. Голография. Физические принципы. Основные схемы получения голограмм.
- •3. Хронология создания лазера. Подробности и факты.
- •2.2 Копенгагенская интерпретация.
- •2.4 Практическое применение
- •Литература:
- •5.1 Белс в. Квантовый эксперимент. 5.2 Сборник статей "Миры Велкора Белса" 5.3 www.Festivalnauki.Ru/statya/14967/kot-shredingera
- •6. Квантовая телепортация. Неравенства Бэлла. Эксперимент а. Аспекта. Экспериментальный инструментарий. Область применения.
- •Эксперимент Аспэ
- •Неравенства Белла
- •Применение
- •Литература
- •6.1Журнал «Physical Review Letters» http://www.Aip.Org/png/html/teleport.Htm
- •Принцип работы оптических волоконных световодов.
- •Потери из-за поглощения (Absorprion Iosses)
- •Потери из-за рассеивания
- •Потери из-за изгибов волокна
- •Потери из-за макроизгибов
- •Потери вследствие излучения
- •Список литературы:
- •8. Фотонные кристаллы. Свойства фотонных структур. Фотонные запрещенные зоны. Управление распространением света в веществе.
- •Классификация фотонных кристаллов
- •Применение фотонных кристаллов
- •Фотонные запрещённые зоны
- •Литература
- •9. Квантовые электродинамические резонаторы. Охлаждение микромеханических резонаторов. Актуальность.
- •Немного истории.
- •Общий подход.
- •Зачем это нужно?
- •Литература
- •10. Квантово-каскадные лазеры. Принцип работы. Типы Применение.
- •1.История создания
- •2.Принцип работы
- •3. Отличия от полупроводниковых лазеров на гетеропереходе
- •4.Типы квантово-каскадных лазеров
- •5.Применение
- •6.Особенности ик и тГц диапазона
- •Терагерцовые ккл
- •11. Вакуумные Раби осцилляции. Эффект Перселла. Область применения оптических фотонно-кристаллических резонаторов.
Фотонный кристалл
Отличительная
особенность фотонных кристаллов (ФК) —
наличие
пространственно-периодического изменения
показателя преломления.
Наиболее
яркой чертой фотонных кристаллов
является существование в 3D ФК определенных
областей спектра, получивших название
полных фотонных
запрещенных зон (ФЗЗ):
существование
излучения с энергией фотонов, принадлежащей
ФЗЗ в таких кристаллах, невозможно,
излучение полностью отражается от
границы. Запрет
нарушается только при наличии дефектов
структуры или
при ограниченных размерах ФК.
Плазмон-поляритоны
Плазмон (иначе квант плазменных колебаний) — квазичастица, отвечающая квантованию плазменных колебаний, которые представляют собой коллективные колебания плотности заряда свободного электронного газа.
Плазмоны (волны электронной плотности) возникают в твердых телах или вблизи их поверхности в результате коллективных колебаний электронов проводимости относительно ионов.
Слева поступает инфракрасный луч (показан красным цветом). Он возбуждает в воронке поверхностные поляритоны, которые концентрируются воронкой и резко наращивают свою силу (красно-жёлтые волны).
Поверхностные плазмоны могут взаимодействовать с фотоном, образуя квазичастицы — поляритоны.
В настоящее время широко применяется явление поверхностного плазмонного резонанса при создании химических и биологических сенсоров (биосенсеров).
Технология «плазмоника»
Сегодня весь земной шар опутан оптическими волокнами, по которым передаются колоссальные потоки информации, закодированной в световых сигналах.
Устройства, манипулирующие видимым светом и другими электромагнитными волнами, могли бы прийти на смену электронным цепям в микропроцессорах и других микросхемах. К сожалению, дифракция накладывает серьезные ограничения на размеры и характеристики фотонных приборов: ширина оптического волокна, из-за интерференции световых волн, должна быть не меньше половины их длины. Для передачи оптических сигналов внутри микросхем скорее всего будет использоваться инфракрасный свет с длиной волны около 1 500 нм. Минимальная ширина световода в этом случае будет слишком велика: транзисторы современных чипов состоят из элементов размером не более 100 нм.
Однако недавно исследователи разработали новый способ передачи оптических сигналов через наноскопические структуры. В 1980-х гг. было экспериментально установлено, что при определенных условиях между световыми волнами, направленными на границу раздела между металлом и диэлектриком, и подвижными электронами на поверхности металла возникает резонансное взаимодействие. Иными словами, электроны начинают колебаться в такт с колебаниями электромагнитного поля над металлом. В результате возникают поверхностные плазмоны — волны плотности электронов, которые распространяются вдоль границы раздела как рябь на поверхности пруда, потревоженной упавшим камнем.
За последнее десятилетие исследователи пришли к выводу, что творческий подход к созданию границы между металлом и диэлектриком позволяет получать поверхностные плазмоны с той же частотой, что и внешние электромагнитные волны, но с намного меньшей длиной волны. Таким образом, плазмоны могут распространяться по наноскопическим межсоединениям, перенося информацию между частями микропроцессора. Плазмонные межсоединения стали бы настоящим подарком для разработчиков микросхем, которые давно научились уменьшать размеры и повышать быстродействие транзисторов, но до сих пор не изобрели электронные цепи, быстро передающие информацию внутри чипа.
Используя свет для создания волн электронной плотности, названных плазмонами, можно передавать оптические сигналы по наноскопическим проводникам. Плазмонные цепи обладают колоссальной пропускной способностью, и поэтому их можно использовать для передачи огромных объемов информации внутри сверхбыстрых микросхем. Применение плазмонных компонентов также позволит повысить разрешение микроскопов, эффективность светоизлучающих диодов и чувствительность химических и биологических датчиков. Некоторые ученые считают, что плазмонные материалы способны искривлять электромагнитные поля вокруг объектов, делая их невидимыми.