
- •Вопрос 1. (Закономерности формирования структуры материала)
- •Понятие «структура материала». Атомно-кристаллическая структура материалов. Аморфные и кристаллические материалы. Элементарная ячейка и её характеристики.
- •Обозначение кристаллографических плоскостей и направлений. Анизотропия. Элементарная ячейка гпу. Поры в кристаллической решётке.
- •Типы кристаллов и их свойства. Металлические и ионные кристаллы. Ковалентные и молекулярные кристаллы. Полиморфизм кристаллических тел.
- •Понятия «сплав», «фаза». Виды фаз. Твердые растворы. Промежуточные фазы. Промежуточные связи с металлической связью, фазы внедрения. Анизотропия.
- •Понятия «сплав», «фаза». Виды фаз. Дефекты кристаллического строения: точечные, линейные, поверхностные, объемные.
- •Формирование структуры литых материалов. Первичная кристаллизация. Кривые охлаждения, критический размер зародыша. Ликвация.
- •Формирование структуры литых материалов. Форма и размер кристаллов. Модифицирование. Аморфное состояние материала.
- •Формирование структуры литых материалов. Размер кристаллов при литье и способы их измельчения.
- •9) Упругая и пластическая деформация. Горячая и холодная пластическая деформация. Механизмы пластической деформации.
- •Пластическая деформация монокристаллов и поликристаллов. Изменение структуры и свойств при пластической деформации.
- •Влияние нагрева на структуру и свойства пластически деформированного металла. Текстура деформации.
- •Диаграмма состояния железоуглеродистых сплавов. Компоненты диаграммы, изотермические превращения.
- •Влияние легирующих элементов на равновесную структуру сталей. Критические точки стали. Классификация стали по равновесной структуре (после отжига).
- •Виды термической обработки: отжиг, закалка, отпуск. Термическая обработка сплавов, не имеющих превращений в твердом состоянии.
- •Типы выделений
- •21) Виды термической обработки стали: отжиг, нормализация, закалка, отпуск. Отжиг на зернистый перлит.
- •Термокинетическая диаграмма стали (на примере стали у8). Критическая скорость охлаждения. Закономерности формирования структуры стали при перлитном превращении.
- •Термокинетическая диаграмма стали (на примере стали у8). Критическая скорость охлаждения. Закономерности формирования структуры стали при мартенситном превращении.
- •Термокинетическая диаграмма доэвтектоидной стали (на примере стали 45). Закономерности формирования структуры стали при бейнитном превращении.
- •Особенности мартенситного превращения в сталях. Структура и свойства мартенсита, температура начала и окончания мартенситного превращения в зависимости от количества углерода в стали.
- •1. Бездиффузионный характер.
- •2. Ориентированность кристаллов мартенсита.
- •3.Очень высокая скорость роста кристалла, до 1000 м/с.
- •5. Превращение необратимое.
- •Нормализация и закалка стали. Закалочные напряжения. Способы охлаждения при закалке.
- •Отпуск стали. Виды отпуска. Изменение структуры и свойств стали при отпуске.
- •Химико-термическая обработка стали. Этапы диффузионного насыщения. Азотирование стали: газовое, ионное. Технология азотирования. Структура и свойства азотированного слоя.
- •Нитроцементация стали. Термические способы упрочнения поверхности стали: закалка с нагрева токами высокой частоты. Структура и свойства упрочнённого слоя.
Понятия «сплав», «фаза». Виды фаз. Дефекты кристаллического строения: точечные, линейные, поверхностные, объемные.
Металлическим сплавом называется вещество, полученное сплавлением двух и более исходных веществ, преимущественно металлических, и обладающее металлическими свойствами.
В настоящее время сплавы получают:
сплавлением;
спеканием (порошковая металлургия);
электролизом;
возгонкой (сублимацией);
плазменным напылением и др.
Вещества, образующие сплав, называются компонентами.
В сплавах компоненты могут различно взаимодействовать друг с другом, образуя те или иные фазы.
Фазой называется однородная по химическому составу, кристаллической структуре, физическим свойствам часть гетерогенной термодинамической системы, отделенная от других ее частей поверхностью раздела, при переходе через которую химический состав или структура изменяются скачком.
Система – это совокупность фаз, находящихся в равновесии и разграниченных поверхностями раздела.
При кристаллизации сплавов могут образовываться следующие основные твердые фазы: твердые растворы, химические соединения, механические смеси.
Помимо твердых растворов в сплавах имеют место промежуточные фазы, которые могут быть образованы только металлами (интерметаллидные фазы), а также металлами с неметаллами. Особенностью промежуточных фаз является то, что они не сохраняют кристаллическую решетку металла растворителя, а имеют свою собственную решетку.
Существует большое количество промежуточных фаз, отличающихся химическим составом, строением и оказывающих значительное влияние на механические и технологические свойства сплавов. Различают интерметаллидные фазы, к ним относятся электронные соединения, σ-фазы, фазы Лавсса. Кроме того, к промежуточным фазам относятся химические соединения, фазы внедрения и вычитания.
Строение реальных кристаллов отличается от идеальных. Реальные кристаллы всегда содержат несовершенства (дефекты) кристаллического строения, которые нарушают связи между атомами и оказывают влияние на свойства металлов.
Дефекты в кристаллах принято классифицировать по характеру их измерения в пространстве:
Точечные. Точечными дефектами называются нарушения периодичности кристалла, размеры которых сопоставимы с размерами атома во всех измерениях.
К точечным дефектам относятся вакансии, межузельные атомы, примеси замещения, примеси чужеродных атомов внедрения (рис. 2.5).
Рис. 2.5.Точечные дефекты в кристаллической решетке: а- вакансия;
б - межузельный атом; в- дефект Френкеля; г- примесные атомы замещения (большой) и внедрения (маленький).
Стрелками указаны направления смещений атомов в решетке.
Вакансии и межузельные атомы появляются в кристаллах при любой температуре выше абсолютного нуля из-за тепловых колебаний атомов.
Пересыщение точечными дефектами достигается при резком охлаждении после высокотемпературного нагрева, при пластическом деформировании и при облучении нейтронами. Чем выше температура, тем больше концентрация вакансий и тем чаще они переходят от узла к узлу. Вакансии являются самой важной разновидностью точечных дефектов; они ускоряют все процессы, связанные с перемещениями атомов: диффузию, спекание порошков и т. д.
2. Линейные. Линейные дефекты в кристаллах характеризуются тем, что их поперечные размеры не превышают нескольких межатомных расстояний, а длина может достигать размера кристалла. К линейным дефектам относятся дислокации – линии, вдоль и вблизи которых нарушено правильное периодическое расположение атомных плоскостей кристалла.
Важнейшие виды линейных несовершенств - краевые и винтовые дислокации
Краевая дислокация в сечении представляет собой край «лишней» полуплоскости в решетке (рис.2.7)
Рис. 2.7. Сечение простой кубической решетки: а - с краевой дислокацией; б - без дислокации.
Вокруг дислокаций решетка упруго искажена. Схема образования атмосферы Коттрелла в кристалле представлена на рисунке 2.8.
Рис. 2.8. Образование атмосферы Коттрелла: а – атомы примеси замещения (заштрихованы) и внедрения беспорядочно расположены в решетке; б, в – атомы примеси переместились к дислокации, в результате чего энергия решетки понизилась.
3. Поверхностные (двумерные). Под этими дефектами понимают нарушения, которые обладают большой протяженностью в двух измерениях и протяженностью лишь в несколько межатомных расстояний в третьем измерении.
К поверхностным дефектам относятся дефекты упаковки, двойниковые границы, границы зерен.
4.Объемные (трехмерные). Под ними понимают нарушения, которые в трех измерениях имеют неограниченные размеры. К таким нарушениям относят трещины, поры, усадочные раковины.