
- •Вопрос 1. (Закономерности формирования структуры материала)
- •Понятие «структура материала». Атомно-кристаллическая структура материалов. Аморфные и кристаллические материалы. Элементарная ячейка и её характеристики.
- •Обозначение кристаллографических плоскостей и направлений. Анизотропия. Элементарная ячейка гпу. Поры в кристаллической решётке.
- •Типы кристаллов и их свойства. Металлические и ионные кристаллы. Ковалентные и молекулярные кристаллы. Полиморфизм кристаллических тел.
- •Понятия «сплав», «фаза». Виды фаз. Твердые растворы. Промежуточные фазы. Промежуточные связи с металлической связью, фазы внедрения. Анизотропия.
- •Понятия «сплав», «фаза». Виды фаз. Дефекты кристаллического строения: точечные, линейные, поверхностные, объемные.
- •Формирование структуры литых материалов. Первичная кристаллизация. Кривые охлаждения, критический размер зародыша. Ликвация.
- •Формирование структуры литых материалов. Форма и размер кристаллов. Модифицирование. Аморфное состояние материала.
- •Формирование структуры литых материалов. Размер кристаллов при литье и способы их измельчения.
- •9) Упругая и пластическая деформация. Горячая и холодная пластическая деформация. Механизмы пластической деформации.
- •Пластическая деформация монокристаллов и поликристаллов. Изменение структуры и свойств при пластической деформации.
- •Влияние нагрева на структуру и свойства пластически деформированного металла. Текстура деформации.
- •Диаграмма состояния железоуглеродистых сплавов. Компоненты диаграммы, изотермические превращения.
- •Влияние легирующих элементов на равновесную структуру сталей. Критические точки стали. Классификация стали по равновесной структуре (после отжига).
- •Виды термической обработки: отжиг, закалка, отпуск. Термическая обработка сплавов, не имеющих превращений в твердом состоянии.
- •Типы выделений
- •21) Виды термической обработки стали: отжиг, нормализация, закалка, отпуск. Отжиг на зернистый перлит.
- •Термокинетическая диаграмма стали (на примере стали у8). Критическая скорость охлаждения. Закономерности формирования структуры стали при перлитном превращении.
- •Термокинетическая диаграмма стали (на примере стали у8). Критическая скорость охлаждения. Закономерности формирования структуры стали при мартенситном превращении.
- •Термокинетическая диаграмма доэвтектоидной стали (на примере стали 45). Закономерности формирования структуры стали при бейнитном превращении.
- •Особенности мартенситного превращения в сталях. Структура и свойства мартенсита, температура начала и окончания мартенситного превращения в зависимости от количества углерода в стали.
- •1. Бездиффузионный характер.
- •2. Ориентированность кристаллов мартенсита.
- •3.Очень высокая скорость роста кристалла, до 1000 м/с.
- •5. Превращение необратимое.
- •Нормализация и закалка стали. Закалочные напряжения. Способы охлаждения при закалке.
- •Отпуск стали. Виды отпуска. Изменение структуры и свойств стали при отпуске.
- •Химико-термическая обработка стали. Этапы диффузионного насыщения. Азотирование стали: газовое, ионное. Технология азотирования. Структура и свойства азотированного слоя.
- •Нитроцементация стали. Термические способы упрочнения поверхности стали: закалка с нагрева токами высокой частоты. Структура и свойства упрочнённого слоя.
Термокинетическая диаграмма стали (на примере стали у8). Критическая скорость охлаждения. Закономерности формирования структуры стали при перлитном превращении.
Посмотрим на термокинетическую диаграмму распада переохлажденного аустенита стали У8. С-образный пупок кривой - перлитное превращение. Если образуется перлит, то уже не будет никакой закалки с образованием мартенсита. Так вот, чтобы не попасть в этот перлитный распад, нужно до примерно 400 .C охладить быстрее чем за одну секунду, даже сердцевину. Далее, до 230 .C (начало мартенситного превращения) можно охлаждать за 100 секунд и никакого распада не пройдет. Даже нужно, поскольку углеродистые стали склонны хрупко трескаться при быстром протекании мартенситного превращения. Скорость охлаждения должна быть выше критической скорости закалки, но как можно более медленная, в этом случае минимально количество дефектов, таких как поводки и закалочные трещины.
Эти диаграммы показывают, что при малых скоростях охлаждения в углеродистой стали возможен распад аустенита только с образованием ферритно-цементитной структуры различной степени дисперсности — перлита, сорбита, троостита. Промежуточного превращения в углеродистой стали не происходит. При высоких скоростях охлаждения (выше vR) аустенит претерпевает только мартенситное превращение. В легированной стали присутствует помимо перлитной также бейнитная область, причем повышение скорости охлаждения способствует образованию бейнита. Бейнитное превращение не проходит до конца и в структуре стали после охлаждения будут присутствовать бейнит, мартенсит и остаточный аустенит. Для получения чисто мартенситной структуры охлаждение стали необходимо проводить со скоростью выше критической, при которой не протекают ни перлитное, ни бейнитное превращения.
Критическая скорость охлаждения (закалки) – это минимальная скорость охлаждения, при которой предотвращается диффузионный распад переохлажденного аустенита.
Закономерности формирования структуры стали при перлитном превращении.
Перлитное превращение - эвтектоидное превращение (распад) аустенита, происходящее ниже 727°С (по другим источникам 723°С) и заключающееся в одновременном зарождении и росте внутри аустенита (ɣ-фаза) двух новых фаз: феррита (ɑ-фаза) и цементита (Fe3C) имеющих пластинчатую форму.
При снижении температуры ниже 727°С скорость превращения увеличивается, достигает максимума при ~550°С и затем уменьшается, падая почти до нуля при ~200°С. Чем ниже температура превращения тем меньше толщина пластинок и выше прочностные свойства. Абсолютная толщина пластинок перлита (межпластинчатое расстояние, период структуры) меняется обычно от нескольких мкм (и тогда их можно различить в рядовом оптическом микроскопе), до десятых долей мкм (пластинки обнаруживаются только при максимальных разрешениях) и до сотых долей мкм (необходим уже электронный микроскоп). Соответствующие дисперсные разновидности перлита называют также сорбит и троостит.
Скорость охлаждения влияет на структуру и свойства смеси феррит + цементит. В результате можно получить качественно одинаковые, но различно называющиеся:
Перлит — получается при медленном охлаждении, обычно вместе с обладающей тепловой инерцией массивной печью, то есть при отжиге.
Примерные свойства: твердость — 200HB, предел прочности — 600МПа, предел текучести — 300МПа.
Сорбит — получается при охлаждении на воздухе (нормализация). Твердость — 300HB, предел прочности — 1000МПа, предел текучести — 500МПа.
Троостит — получается при более высокой скорости охлаждения, обычно в каком-либо минеральном масле. Твердость — 400HB, предел прочности — 1400МПа, предел текучести — 700МПа.
Бейнит - ультра десперсионный перлит. Твердость — 40 — 55HRС, предел прочности — ??МПа, предел текучести — ??МПа.