Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Логика- ответы.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
199.53 Кб
Скачать
  1. Дизъюнктивные высказывания.

Соединение двух высказываний с помощью слова «или» дает дизъюнкцию этих высказываний. Высказывания, образующие дизъюнкцию, называются членами дизъюнкции.

Слово «или» в повседневном языке имеет два разных смысла. Иногда оно означает «одно или другое или оба», а иногда «одно или другое, но не оба вместе».

Первый смысл «или» называется неисключающим. Взятая в этом смысле дизъюнкция двух высказываний означает только, что по крайней мере одно из этих высказываний истинно независимо от того, истинны они оба или нет. Взятая во втором, исключающем, смысле дизъюнкция двух высказываний утверждает, что одно из них истинно, а второе – ложно.

Неисключающая дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно, и ложна, только когда оба ее члена ложны; исключающая дизъюнкция истинна, когда истинным является только один из ее членов, и она ложна, когда оба ее члена истинны или оба ложны.

В логике и математике слово «или» почти всегда употребляется в неисключающем значении.

Центральная задача логики – отделение правильных схем рассуждения от неправильных и систематизация первых. Логическая правильность определяется логической формой. Для ее выявления нужно отвлечься от содержательных частей рассуждения (собственных символов) и сосредоточить внимание на несобственных символах, представляющих эту форму в чистом виде. Отсюда интерес формальной логики к таким, обычно не привлекающим внимания словам, как «и», «или», «если, то» и т.п.

  1. Импликативные высказывания.

Условное высказывание, или импликация

Условное высказывание – сложное высказывание, формулируемое обычно с помощью связки «если ..., то ...» и устанавливающее, что одно событие, состояние и т.п. является в том или ином смысле основанием или условием для другого.

Условное высказывание слагается из двух более простых высказываний. То из них, которому предпослано слово «если», называется основанием, или антецедентом (предыдущим); высказывание, идущее после слова «то», называется следствием, или консеквентом (последующим).

Утверждая условное высказывание, мы прежде всего имеем в виду, что не может быть так, чтобы то, о чем говорится в его основании, имело место, а то, о чем говорится в следствии, отсутствовало. Иными словами, не может случиться, чтобы антецедент был истинным, а консеквент – ложным.

В терминах условного высказывания обычно определяются понятия достаточного и необходимого условия: антецедент (основание) есть достаточное условие для консеквента (следствия), а консеквент – необходимое условие для антецедента.

Условное высказывание находит очень широкое применение во всех сферах рассуждения. В логике оно представляется, как правило, посредством импликативного высказывания, или импликации. При этом логика проясняет, систематизирует и упрощает употребление «если ..., то ...», освобождает его от влияния психологических факторов.

Утверждая импликацию, мы утверждаем, что не может случиться, чтобы ее основание (антецедент) было истинным, а следствие (консеквент) – ложным.

Это определение предполагает, как и предыдущие определения связок, что всякое высказывание является либо истинным, либо ложным и что истинностное значение сложного высказывания зависит только от истинностных значений составляющих его высказываний и способа их связи.

Таким образом, для установления истинности импликации «если А, то В» достаточно выяснить истинностные значения высказываний А и В. Из четырех возможных случаев импликация истинна в следующих трех: 1) и ее основание, и ее следствие истинны; 2) основание ложно, а следствие истинно; 3) и основание, и следствие ложны.

Только в четвертом случае, когда основание истинно, а следствие ложно, импликация ложна.

Импликацией не предполагается, что высказывания А и В как-то связаны между собой по содержанию. В случае истинности В высказывание «если А, то В» истинно независимо от того, является А истинным или ложным и связано оно по смыслу с В или нет.