Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Логика- ответы.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
199.53 Кб
Скачать

7.Определение. Правила определения, ошибки, возможные при их нарушении.

Определение – логическая операция, раскрывающая содержание имени. Определить имя – значит указать, какие признаки входят в его содержание.

Определяя, например, манометр, мы указываем, что это, во-первых, прибор, и, во-вторых, именно тот, с помощью которого измеряется давление.

Определение решает две задачи. Оно отличает и отграничивает определяемый предмет от всех иных. Скажем, определение манометра позволяет однозначно отграничить манометры от всех предметов, не являющихся приборами, и отделить манометры по присущим только им признакам от всех иных приборов. Далее, определение раскрывает сущность определяемых предметов, указывает те их основные признаки, без которых они не способны существовать и от которых в значительной мере зависят все иные их признаки.

С этой второй задачей как раз и связаны основные трудности определения конкретных имен.

Дать хорошее определение – значит раскрыть сущность определяемого объекта.

Правила определения.

1. Определяемое и определяющее понятия должны быть взаимозаменяемы.

2. Нельзя определять имя через само себя или определять его через такое другое имя, которое, в свою очередь, определяется через него. Это правило запрещает порочный круг.

3. Определение должно быть ясным. Это означает, что в определяющей части могут использоваться только имена, известные и понятные тем, на кого рассчитано определение.

8.Высказывание как форма мышления. Простые высказывания и их виды.

Высказывание – грамматически правильное предложение, взятое вместе с выражаемым им смыслом (содержанием) и являющееся истинным или ложным.

Высказывания бывают простые и сложные. Простое высказывание (суждение) – это высказывание, в котором ни какая его часть не является высказыванием

Понятие высказывания – одно из исходных, ключевых понятий логики. Как таковое оно не допускает точного определения, в равной мере приложимого в разных ее разделах. Ясно, что всякое высказывание описывает определенную ситуацию, что-то утверждая или отрицая о ней, и является истинным или ложным.

В алгебре высказываний суждениям (простым высказываниям) ставятся в соответствие логические переменные, обозначаемые прописными буквами латинского алфавита. Истинному высказыванию соответствует значение логической переменной 1, а ложному – 0.

9.Категорические высказывания. Деление высказываний по качеству и количеству.

Категорическое высказывание – это высказывание, в котором утверждается или отрицается наличие какого-то признака у всех или некоторых предметов рассматриваемого класса.

Если отвлечься от количественной характеристики, содержащейся в категорическом высказывании и выражающейся словами «все» и «некоторые», то получится два варианта таких высказываний: утвердительный и отрицательный. Их структура:

«S есть Р» и «S не есть Р»,

где буква S представляет имя того предмета, о котором идет речь в высказывании, а буква Р – имя признака, присущего или не присущего этому предмету.

Имя предмета, о котором говорится в категорическом высказывании, называется субъектом, а имя его признака – предикатом. Субъект и предикат именуются терминами категорического высказывания и соединяются между собой связками «есть» или «не есть» («является» или «не является» и т.п.).

В категорическом высказывании не просто устанавливается связь предмета и признака, но и дается определенная количественная характеристика субъекта высказывания. В высказываниях типа «Все S есть (не есть) Р» слово «все» означает «каждый из предметов соответствующего класса». В высказываниях типа «Некоторые S есть (не есть) Р» слово «некоторые» употребляется в неисключающем смысле и означает «некоторые, а может быть, все». В исключающем смысле слово «некоторые» означает «только некоторые», или «некоторые, но не все». Различие между двумя смыслами этого слова можно продемонстрировать на примере высказывания «Некоторые звезды есть звезды». В неисключающем смысле оно означает «Некоторые, а возможно, и все звезды есть звезды» и является, очевидно, истинным. В исключающем же смысле данное высказывание означает «Лишь некоторые звезды являются звездами» и является явно ложным.