Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Поточное двоичное шифрование файла на основе ЛР...docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
167.52 Кб
Скачать
      1. Програмная реализация lfsr

Программные реализации LFSR медленны и быстрее работают, если они написаны на ассемблере, а не на C. Одним из решений является использование параллельно 16 LFSR (или 32, в зависимости от длины слова вашего компьютера). В этой схеме используется массив слов, размер которого равен длине LFSR, а каждый бит слова массива относится к своему LFSR. При условии, что используются одинаковые многочлены обратной связи, это может дать заметный выигрыш производительности. Вообще, лучшим способом обновлять сдвиговые регистры является умножение текущего состояния на подходящие двоичные матрицы .

Схему обратной связи LFSR можно модифицировать. Получающийся генератор не будет криптографически более надежным, но он все еще будет обладать максимальным периодом, и его легче реализовать программно. Вместо использования для генерации нового крайнего левого бита битов отводной последовательности выполняется XOR каждого бита отводной последовательности с выходом генератора и замена его результатом этого действия, затем результат генератора становится новым крайним левым битом. Иногда эту модификацию называют конфигурацией Галуа.

      1. Линейная сложность

Анализировать потоковые шифры часто проще, чем блочные. Например, важным параметром, используемым для анализа генераторов на базе LFSR, является линейная сложность (linear complexity), или линейный интервал. Она определяется как длина n самого короткого LFSR, который может имитировать выход генератора. Любая последовательность, генерированная конечным автоматом над конечным полем, имеет конечную линейную сложность. Линейная сложность важна, потому что с помощью простого алгоритма, называемого алгоритмом Berlekamp-Massey, можно определить этот LFSR, проверив только 2n битов потока ключей. Воссоздавая нужный LFSR, вы взламываете потоковый шифр.

Эта идея можно расширить с полей на кольца и на случаи, когда выходная последовательность рассматривается как числа в поле нечетной характеристики. Дальнейшее расширение приводит к вводу понятия профиля линейной сложности, который определяет линейную сложность последовательности по мере ее удлинения. Другой алгоритм вычисления линейной сложности прост только в очень специфических условиях. Обобщение понятия линейной сложности выполнено в. Существую также понятия сферической и квадратичной сложности.

В любом случае помните, что высокая линейная сложность не обязательно гарантирует безопасность генератора, но низкая линейная сложность указывает на недостаточную безопасность генератора.

      1. Корреляционная независимость

Криптографы пытаются получить высокую линейную сложность, нелинейно объединяя результаты некоторых выходных последовательностей. При этом опасность состоит в том, что одна или несколько внутренних выходных последовательностей - часто просто выходы отдельных LFSR - могут быть связаны общим ключевым потоком и вскрыты при помощи линейной алгебры. Часто такое вскрытие называют корреляционным вскрытием или вскрытием разделяй-и-властвуй. Томас Сигенталер (Thomas Siegenthaler) показал, что можно точно определить корреляционную независимость, и что существует компромисс между корреляционной независимостью и линейной сложностью.

Основной идеей корреляционного вскрытия является обнаружение некоторой корреляции между выходом генератора и выходом одной из его составных частей. Тогда, наблюдая выходную последовательность, можно получить информацию об этом промежуточном выходе. Используя эту информацию и другие корреляции, можно собирать данные о других промежуточных выходах до тех пор, пока генератор не будет взломан.

Против многих генераторов потоков ключей на базе LFSR успешно использовались корреляционные вскрытия и их вариации, такие как быстрые корреляционные вскрытия, предлагающие компромисс между вычислительной сложностью и эффективностью.