
- •3. 5. Вывод уравнения Фурье для одномерной задачи теплопроводности.
- •10.Нестационарная теплопроводность при гу 2
- •11. Безразмерная форма краевой задачи теплопроводности при гу-III-го рода
- •14. Сеточный метод решения одно- и двумерных задач нестационарной теплопроводности
- •15. Явная и неявная схемы численного определения температурных полей
- •13. Метод элементарного теплового баланса при численном решении задач теплопроводности.
- •17. Неявная схема численного решения двухмерной задачи теплопроводности
- •18.Физический принцип стационарности температурных полей.
- •19. Стационарное температурное поле в неограниченной пластине
- •20. Нелинейная стационарная теплопроводность в однослойной плоской стенке.
- •21. Стационарный тепловой поток через однослойную плоскую стенку при гу-I.
- •23. Стационарное температурное поле в полом цилиндре.
- •24.Стацтионарный тепловой поток через однослойный полый цилиндр при гу-I.
- •25.Стационарный тепловой поток через многослойный полый цилиндр при гу-I.
- •26. Стационарный тепловой поток через многослойный полый цилиндр при гу-III.
- •27. Стационарный тепловой поток через многослойную плоскую стенку при гу-III.
- •28. Вывод формулы для определения теплового потока через однослойный полый цилиндр.
- •29.Расчет величины плотности теплового потока в теле.
- •30.Температурный фактор задач конвективного теплообмена.
- •31.Схема Нуссельта для описания конвективного теплообмена.
- •32. Конвективный теплообмен при течении в трубах.
- •33.Внешняя и внутренняя задача конвективного теплообмена: особенности формирования теплового и гидродинамического пограничного слоёв, эффекты стабилизации
- •34.Переход течения на пластине из ламинарного в турбулентное и связанное с ним изменение нарастания толщины пограничного слоя и теплоотдачи
- •35.Особенности формирования динамического пограничного слоя во внешних задачах
- •36.Особенности формирования динамического пограничного слоя во внутренней задаче
- •37.Особенности формирования теплового пограничного слоя во внешней задаче
- •38.Особенности формирования теплового пограничного слоя во внутренней задаче
- •39.Стабилизация конвективного теплообмена по длине канала в ламинарном и турбулентном режимах течения
- •40.Теплообмен при свободной конвекции у вертикальной плиты
- •41.Третья (основная) теорема теории подобия и моделирования физических явлений
- •42.47.Вывод аргумента Ra для описания теплоотдачи при свободной конвекции
- •43.Вывод критериев подобия из рассмотрения уравнения нестационарного теплопереноса в потоке (уравнения Фурье-Кирхгофа)
- •44.Обоснование формы критериальных зависимостей для описания конвективного теплообмена
- •45.Критериальные формулы для описания теплообмена при свободной конвекции
- •46.Физический смысл критериев Re, Pr, Pe
- •48.Физическое обоснование условий, необходимых и достаточных для подобия явлений одной природы
- •49.Вывод критериев подобия из рассмотрения уравнения нестационарного течения (уравнения Навье - Стокса)
- •50.Температурный фактор в критериальных формулах для описания конвективного теплообмена
- •51.Критериальные формулы для описания конвективного теплообмена при обтекании пластины
- •52.Теплообмен при свободной конвекции в большом объёме
- •53.Тепловая изоляция труб и цилиндрических сосудов: обоснование выбора толщины изоляции
- •54.Конвективный теплообмен при турбулентном режиме течения в канале
- •55.Гидродинамика и теплообмен при поперечном обтекании одиночного цилиндра пучка труб.
- •56. Гидродинамика и теплообмен при обтекании коридорного и шахматного пучка труб
- •57.Основные законы равновесного теплового излучения твёрдых тел
- •58.Механизм излучения твёрдых тел, равновесное тепловое излучение. Закон Стефана-Больцмана
- •59.Определение результирующего лучистого теплового потока между твёрдыми телами и между газом и твёрдым телом
- •60.Особенности излучения газов. Степень черноты смеси газов
- •61.Метод расчёта результирующего лучистого потока энергии между твёрдыми телами и между газом и твёрдым телом
- •62.Роль экранов в лучистом теплообмене твёрдых тел. Экранно-вакуумная тепловая изоляция
- •63.Теплообмен при кипении жидкости в большом объёме
- •64.Условие существования газового пузырька
- •65.Кризис кипения в сосуде - механизм явления, интенсивность теплообмена
- •66.Критериальные зависимости для описания теплоотдачи при кипении
- •67.Кризис кипения движущейся жидкости – механизм явления и интенсивность кипения
- •68.Теплообмен при конденсации паров
- •69.Предпосылки теории Нуссельта для определения интенсивности теплоотдачи при конденсации
- •70.Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •70. Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •71.Теплообмен при волнообразовании и при турбулизации течения плёнки конденсата
- •72.Влияние неконденсирующихся газов и факторов эксплуатации конденсаторов паровых турбин на теплообмен при конденсации
- •74. Влияние неконденсирующихся газов в газовой смеси на теплообмен при конденсации
- •75.Основные элементы теории массопроводности. Гипотеза а. Фика: содержание, физический смысл, область применения.
- •76.Гипотеза а. Фика. Граничные условия уравнения массопроводности: гу-I,гу-II,гу-III,гу-IV рода.
- •78.Тройная аналогия между переносом тепла, вещества и количества движения
- •79.Обратные задачи теплопроводности, их особенности
- •80.Теплообмен в разряжённых газах
- •81.Теплообмен при больших дозвуковых скоростях газа
- •82.Способы интенсификации конвективного теплообмена
- •83.Оребрение теплообменных поверхностей
- •84.Основные требования, предъявляемые к теплообменным аппаратам
- •85.Классификация теплообменных аппаратов
- •86.Уравнения, лежащие в основе расчёта теплообменных аппаратов
- •86. Принципы теплового расчета теплообменника.
- •87.Определение среднего температурного напора
18.Физический принцип стационарности температурных полей.
По
истечении достаточно длительного
времени от начала процесса теплопроводности
(теоретически при
)
температурные изменения в теле во
времени прекращаются и наступает режим
стационарной теплопроводности, когда
.
В этом режиме при одинаковой температуре
омывающей тело среды в нем отсутствуют
градиенты температуры (устанавливается
однородное температурное поле) и
отсутствует теплоперенос.
При рассмотрении стационарной теплопроводности обычно решаются два вопроса: 1) определение температуры в любом месте тела, 2) нахождение величины стационарного теплового потока через конструкцию.
Физический принцип: в стационарном тепловом режиме одинаков тепловой поток, пересекающий любую изотермическую поверхность в теле и любую его часть, ограниченную изотермическими поверхностями.
19. Стационарное температурное поле в неограниченной пластине
Стационарный
тепловой поток Q(x)
через отстоящий на расстоянии х
участок изотермической поверхности
площадью F(x)
(рис. 1.4) за единицу времени равен
.
Разделяя переменные, имеем
(1.81).
Принимаем, что коэффициент теплопроводности
одинаков, т.е.
= const.
Кроме того, в стационарном тепловом
режиме всегда Q(x)
= const,
а в пластине и F(x)
= const
в случае одномерного температурного
поля. Интегрирование (1.81) дает
, где
C1
- произвольная постоянная.
Таким образом, в указанных выше предположениях распределение температуры Т по координате х в неограниченной пластине подчиняется линейному закону (рис. 1.13).
20. Нелинейная стационарная теплопроводность в однослойной плоской стенке.
Реальные материалы характеризуются зависимостью коэффициента теплопроводности от температуры. Рассмотрим в качестве примера нелинейную стационарную теплопроводность в однослойной плоской стенке при ГУ-I для трех видов материала: а) = const; б) растет с ростом температуры; в) убывает с ростом температуры.
Для
этих случаев зависимость для расчета
плотности теплового потока дает
При = const
имеем на основании
т.е.
получаем линейное распределение
температуры по толщине пластины (линия
a). При росте
с увеличением температуры в тех местах
пластины, где температура выше, будет
соответственно меньше модуль производной
dT/dx
(линия б). И, наконец, при уменьшении
с ростом температуры
распределение температуры будет
соответствовать линии в.
Таким образом, в пластине, изготовленной из реального материала, распределение температуры по координате x является нелинейным.
21. Стационарный тепловой поток через однослойную плоскую стенку при гу-I.
В
этом случае известны температуры
и
на ограничивающих поверхностях пластины.
Стационарный
тепловой поток Q(x)
через отстоящий на расстоянии х
участок изотермической поверхности
площадью F(x)
за единицу времени равен
.
Разделяя переменные, имеем
.
Проинтегрируем обе части (1.81) при
следующих условиях:
Имеем тогда
откуда следует формула для расчета
стационарного теплового потока через
конструкцию
.
22. Стационарный тепловой поток через многослойную плоскую стенку при ГУ-I.
Стенка
(пластина) состоит из m
слоев, у материала каждого из которых
свое значение коэффициента теплопроводности
i
и толщина
.
Тепловой
поток пересекает все слои конструкции,
т.е. он встречает последовательную
цепочку термических сопротивлений,
каждое из которых равно
,
так что имеем
Физический принцип тепловой стационарности
позволяет найти и температуру в любом
месте конструкции. Так, температура
на стыке первого и второго слоев находится
из формулы
при предварительно вычисленной согласно
левой части.