
- •3. 5. Вывод уравнения Фурье для одномерной задачи теплопроводности.
- •10.Нестационарная теплопроводность при гу 2
- •11. Безразмерная форма краевой задачи теплопроводности при гу-III-го рода
- •14. Сеточный метод решения одно- и двумерных задач нестационарной теплопроводности
- •15. Явная и неявная схемы численного определения температурных полей
- •13. Метод элементарного теплового баланса при численном решении задач теплопроводности.
- •17. Неявная схема численного решения двухмерной задачи теплопроводности
- •18.Физический принцип стационарности температурных полей.
- •19. Стационарное температурное поле в неограниченной пластине
- •20. Нелинейная стационарная теплопроводность в однослойной плоской стенке.
- •21. Стационарный тепловой поток через однослойную плоскую стенку при гу-I.
- •23. Стационарное температурное поле в полом цилиндре.
- •24.Стацтионарный тепловой поток через однослойный полый цилиндр при гу-I.
- •25.Стационарный тепловой поток через многослойный полый цилиндр при гу-I.
- •26. Стационарный тепловой поток через многослойный полый цилиндр при гу-III.
- •27. Стационарный тепловой поток через многослойную плоскую стенку при гу-III.
- •28. Вывод формулы для определения теплового потока через однослойный полый цилиндр.
- •29.Расчет величины плотности теплового потока в теле.
- •30.Температурный фактор задач конвективного теплообмена.
- •31.Схема Нуссельта для описания конвективного теплообмена.
- •32. Конвективный теплообмен при течении в трубах.
- •33.Внешняя и внутренняя задача конвективного теплообмена: особенности формирования теплового и гидродинамического пограничного слоёв, эффекты стабилизации
- •34.Переход течения на пластине из ламинарного в турбулентное и связанное с ним изменение нарастания толщины пограничного слоя и теплоотдачи
- •35.Особенности формирования динамического пограничного слоя во внешних задачах
- •36.Особенности формирования динамического пограничного слоя во внутренней задаче
- •37.Особенности формирования теплового пограничного слоя во внешней задаче
- •38.Особенности формирования теплового пограничного слоя во внутренней задаче
- •39.Стабилизация конвективного теплообмена по длине канала в ламинарном и турбулентном режимах течения
- •40.Теплообмен при свободной конвекции у вертикальной плиты
- •41.Третья (основная) теорема теории подобия и моделирования физических явлений
- •42.47.Вывод аргумента Ra для описания теплоотдачи при свободной конвекции
- •43.Вывод критериев подобия из рассмотрения уравнения нестационарного теплопереноса в потоке (уравнения Фурье-Кирхгофа)
- •44.Обоснование формы критериальных зависимостей для описания конвективного теплообмена
- •45.Критериальные формулы для описания теплообмена при свободной конвекции
- •46.Физический смысл критериев Re, Pr, Pe
- •48.Физическое обоснование условий, необходимых и достаточных для подобия явлений одной природы
- •49.Вывод критериев подобия из рассмотрения уравнения нестационарного течения (уравнения Навье - Стокса)
- •50.Температурный фактор в критериальных формулах для описания конвективного теплообмена
- •51.Критериальные формулы для описания конвективного теплообмена при обтекании пластины
- •52.Теплообмен при свободной конвекции в большом объёме
- •53.Тепловая изоляция труб и цилиндрических сосудов: обоснование выбора толщины изоляции
- •54.Конвективный теплообмен при турбулентном режиме течения в канале
- •55.Гидродинамика и теплообмен при поперечном обтекании одиночного цилиндра пучка труб.
- •56. Гидродинамика и теплообмен при обтекании коридорного и шахматного пучка труб
- •57.Основные законы равновесного теплового излучения твёрдых тел
- •58.Механизм излучения твёрдых тел, равновесное тепловое излучение. Закон Стефана-Больцмана
- •59.Определение результирующего лучистого теплового потока между твёрдыми телами и между газом и твёрдым телом
- •60.Особенности излучения газов. Степень черноты смеси газов
- •61.Метод расчёта результирующего лучистого потока энергии между твёрдыми телами и между газом и твёрдым телом
- •62.Роль экранов в лучистом теплообмене твёрдых тел. Экранно-вакуумная тепловая изоляция
- •63.Теплообмен при кипении жидкости в большом объёме
- •64.Условие существования газового пузырька
- •65.Кризис кипения в сосуде - механизм явления, интенсивность теплообмена
- •66.Критериальные зависимости для описания теплоотдачи при кипении
- •67.Кризис кипения движущейся жидкости – механизм явления и интенсивность кипения
- •68.Теплообмен при конденсации паров
- •69.Предпосылки теории Нуссельта для определения интенсивности теплоотдачи при конденсации
- •70.Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •70. Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •71.Теплообмен при волнообразовании и при турбулизации течения плёнки конденсата
- •72.Влияние неконденсирующихся газов и факторов эксплуатации конденсаторов паровых турбин на теплообмен при конденсации
- •74. Влияние неконденсирующихся газов в газовой смеси на теплообмен при конденсации
- •75.Основные элементы теории массопроводности. Гипотеза а. Фика: содержание, физический смысл, область применения.
- •76.Гипотеза а. Фика. Граничные условия уравнения массопроводности: гу-I,гу-II,гу-III,гу-IV рода.
- •78.Тройная аналогия между переносом тепла, вещества и количества движения
- •79.Обратные задачи теплопроводности, их особенности
- •80.Теплообмен в разряжённых газах
- •81.Теплообмен при больших дозвуковых скоростях газа
- •82.Способы интенсификации конвективного теплообмена
- •83.Оребрение теплообменных поверхностей
- •84.Основные требования, предъявляемые к теплообменным аппаратам
- •85.Классификация теплообменных аппаратов
- •86.Уравнения, лежащие в основе расчёта теплообменных аппаратов
- •86. Принципы теплового расчета теплообменника.
- •87.Определение среднего температурного напора
81.Теплообмен при больших дозвуковых скоростях газа
При больших же дозвуковых скоростях обтекания тела неразреженным газом величина М достаточно большая и приходится поэтому учитывать влияние указанных факторов на теплообмен. При таких скоростях возникает эффект саморазогрева тел, который может быть настолько большим, что, например, метеоритная пыль, влетающая из космоса в атмосферу Земли, из-за торможения газа на ее поверхности очень сильно разогревается и сгорает.
Если твердое тело длительное время
обтекается высокоскоростным потоком
газа, то на его поверхности устанавливается
постоянная температура, называемая
собственной температурой поверхности
тела
.
Понятно, что для лобовой точки тела эта
температура совпадает с температурой
торможения потока
При больших дозвуковых скоростях газа
в качестве движущей силы принимают
разность температур
и при известной плотности теплового
потока
коэффициент теплоотдачи
82.Способы интенсификации конвективного теплообмена
Для создания компактных конструкций возникает необходимость уменьшить величину площади F. Одним из подходов для достижения этой цели является увеличение коэффициента теплоотдачи или коэффициента массоотдачи , что и называется интенсификацией конвективного тепломассообмена.
1)Увеличения значений
и , прежде всего,
можно достигнуть за счет роста уровня
турбулентности движущейся среды при
увеличении критерия Рейнольдса Re,
равного.
(4.23)
Увеличения числа Рейнольдса Re можно достичь следующими путями:
а) увеличением плотности , если движущаяся среда является газом и есть возможность ее сжимать;
б) увеличением характерной скорости
;
в) уменьшением вязкости жидкости
2) способ интенсификации теплоотдачи в каналах с кольцевой накаткой. При этом на наружной поверхности трубы образуются периодически расположенные кольцевые канавки, а на внутренней – кольцевые выступы с плавным профилем
3)Известны методы интенсификации конвективного теплообмена наложением электромагнитных колебаний на чувствительные к ним жидкости (акад. М.К. Болога) и внесением акустических колебаний в движущуюся среду
83.Оребрение теплообменных поверхностей
При
необходимости отвода значительного
теплового потока
Q
при отсутствии реальной возможности
изменить температурные уровни
теплообменной поверхности
и омывающей её жидкости
исп.
Два подхода:
1. Увеличение площади теплообменной поверхности F.
2. Увеличение коэффициента теплоотдачи
Увеличение теплообменной поверхности достигается размещением на основной (несущей) поверхности ребристых элементов различной конфигурации: прямолинейные ребра , круглые ребра , ребра в виде листов металла итд.
Тепловой поток Q , отводимый от оребренной поверхности потоком жидкости (газа), определяется как
в расчетной практике пользуются не формулой (4.15), а следующей ее модификацией:
Коэффициент эффективности оребренной поверхности вычисляется по формуле