
- •3. 5. Вывод уравнения Фурье для одномерной задачи теплопроводности.
- •10.Нестационарная теплопроводность при гу 2
- •11. Безразмерная форма краевой задачи теплопроводности при гу-III-го рода
- •14. Сеточный метод решения одно- и двумерных задач нестационарной теплопроводности
- •15. Явная и неявная схемы численного определения температурных полей
- •13. Метод элементарного теплового баланса при численном решении задач теплопроводности.
- •17. Неявная схема численного решения двухмерной задачи теплопроводности
- •18.Физический принцип стационарности температурных полей.
- •19. Стационарное температурное поле в неограниченной пластине
- •20. Нелинейная стационарная теплопроводность в однослойной плоской стенке.
- •21. Стационарный тепловой поток через однослойную плоскую стенку при гу-I.
- •23. Стационарное температурное поле в полом цилиндре.
- •24.Стацтионарный тепловой поток через однослойный полый цилиндр при гу-I.
- •25.Стационарный тепловой поток через многослойный полый цилиндр при гу-I.
- •26. Стационарный тепловой поток через многослойный полый цилиндр при гу-III.
- •27. Стационарный тепловой поток через многослойную плоскую стенку при гу-III.
- •28. Вывод формулы для определения теплового потока через однослойный полый цилиндр.
- •29.Расчет величины плотности теплового потока в теле.
- •30.Температурный фактор задач конвективного теплообмена.
- •31.Схема Нуссельта для описания конвективного теплообмена.
- •32. Конвективный теплообмен при течении в трубах.
- •33.Внешняя и внутренняя задача конвективного теплообмена: особенности формирования теплового и гидродинамического пограничного слоёв, эффекты стабилизации
- •34.Переход течения на пластине из ламинарного в турбулентное и связанное с ним изменение нарастания толщины пограничного слоя и теплоотдачи
- •35.Особенности формирования динамического пограничного слоя во внешних задачах
- •36.Особенности формирования динамического пограничного слоя во внутренней задаче
- •37.Особенности формирования теплового пограничного слоя во внешней задаче
- •38.Особенности формирования теплового пограничного слоя во внутренней задаче
- •39.Стабилизация конвективного теплообмена по длине канала в ламинарном и турбулентном режимах течения
- •40.Теплообмен при свободной конвекции у вертикальной плиты
- •41.Третья (основная) теорема теории подобия и моделирования физических явлений
- •42.47.Вывод аргумента Ra для описания теплоотдачи при свободной конвекции
- •43.Вывод критериев подобия из рассмотрения уравнения нестационарного теплопереноса в потоке (уравнения Фурье-Кирхгофа)
- •44.Обоснование формы критериальных зависимостей для описания конвективного теплообмена
- •45.Критериальные формулы для описания теплообмена при свободной конвекции
- •46.Физический смысл критериев Re, Pr, Pe
- •48.Физическое обоснование условий, необходимых и достаточных для подобия явлений одной природы
- •49.Вывод критериев подобия из рассмотрения уравнения нестационарного течения (уравнения Навье - Стокса)
- •50.Температурный фактор в критериальных формулах для описания конвективного теплообмена
- •51.Критериальные формулы для описания конвективного теплообмена при обтекании пластины
- •52.Теплообмен при свободной конвекции в большом объёме
- •53.Тепловая изоляция труб и цилиндрических сосудов: обоснование выбора толщины изоляции
- •54.Конвективный теплообмен при турбулентном режиме течения в канале
- •55.Гидродинамика и теплообмен при поперечном обтекании одиночного цилиндра пучка труб.
- •56. Гидродинамика и теплообмен при обтекании коридорного и шахматного пучка труб
- •57.Основные законы равновесного теплового излучения твёрдых тел
- •58.Механизм излучения твёрдых тел, равновесное тепловое излучение. Закон Стефана-Больцмана
- •59.Определение результирующего лучистого теплового потока между твёрдыми телами и между газом и твёрдым телом
- •60.Особенности излучения газов. Степень черноты смеси газов
- •61.Метод расчёта результирующего лучистого потока энергии между твёрдыми телами и между газом и твёрдым телом
- •62.Роль экранов в лучистом теплообмене твёрдых тел. Экранно-вакуумная тепловая изоляция
- •63.Теплообмен при кипении жидкости в большом объёме
- •64.Условие существования газового пузырька
- •65.Кризис кипения в сосуде - механизм явления, интенсивность теплообмена
- •66.Критериальные зависимости для описания теплоотдачи при кипении
- •67.Кризис кипения движущейся жидкости – механизм явления и интенсивность кипения
- •68.Теплообмен при конденсации паров
- •69.Предпосылки теории Нуссельта для определения интенсивности теплоотдачи при конденсации
- •70.Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •70. Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •71.Теплообмен при волнообразовании и при турбулизации течения плёнки конденсата
- •72.Влияние неконденсирующихся газов и факторов эксплуатации конденсаторов паровых турбин на теплообмен при конденсации
- •74. Влияние неконденсирующихся газов в газовой смеси на теплообмен при конденсации
- •75.Основные элементы теории массопроводности. Гипотеза а. Фика: содержание, физический смысл, область применения.
- •76.Гипотеза а. Фика. Граничные условия уравнения массопроводности: гу-I,гу-II,гу-III,гу-IV рода.
- •78.Тройная аналогия между переносом тепла, вещества и количества движения
- •79.Обратные задачи теплопроводности, их особенности
- •80.Теплообмен в разряжённых газах
- •81.Теплообмен при больших дозвуковых скоростях газа
- •82.Способы интенсификации конвективного теплообмена
- •83.Оребрение теплообменных поверхностей
- •84.Основные требования, предъявляемые к теплообменным аппаратам
- •85.Классификация теплообменных аппаратов
- •86.Уравнения, лежащие в основе расчёта теплообменных аппаратов
- •86. Принципы теплового расчета теплообменника.
- •87.Определение среднего температурного напора
74. Влияние неконденсирующихся газов в газовой смеси на теплообмен при конденсации
Как правило процесс конденсации происходит так: внутри горизонтально расположенных труб движется охлаждающая вода, а в межтрубном пространстве конденсируется пар, который расширился в турбине.
Однако в реальных условиях факторы влияющие на теплообмен это: во первых, конденсация происходит не в одной, а в пучке труб, и поэтому стекающий конденсат и утолщает пленку, и турбулизирует ее. Во вторых, пар поступает влажным на конденсацию, поэтому в паровое простр-во конд-ра вносится часть жидкости, выпадающей на его трубы. В третьих пар поступает с большими скоростями в межтрубное пр-во, и это возмущает пленку. В четвертых давление на выходе из паровой турбины низкое, а снаружи высокое, и воздух через неплотности подсасывается в паровое простр-во и давление там повышается.
75.Основные элементы теории массопроводности. Гипотеза а. Фика: содержание, физический смысл, область применения.
К ним относятся: потенциал саммопроводности, после потенциала массопроводности, изопотенциальная пов-ть, изолиния, градиент потенциала массопроводности, поток в-ва и плотность потока в-ва. Когда т-ра и давление в каждой точке тела одинаковы, в кач-ве потенциала массопроводности служит концентрация в-ва С.
Основная задача теории концентрационной массопровдности является определение С в любой точке геометрической области, занимаемой телом в любой момент времени. А совокупность значений С в фиксированный момент времени – это поле конц-ий. Изопотенц. Пов-ть – это реальная или воображаемая пов-ть, в кажд. Точке которой в данный момент времени конц.в-ва одинакова. Если такие пов-ти пересекаются, они дают изолинии. Предел отношения дельтаС в расскояни. Дельта n, взятому по нормали к изопотен-ым линиям наз-ся градиентом конц-ии. Кол-во в-ва, проходищего чз всю площадь изопотенц. Пов-ти за время т наз-ся потоком в-ва М, а та его часть, кот. Проходит чз единицу площади за ед. времени – плотность потока в-ва m.
Фиком
была выдвинута гипотеза о виде связи
между вектором плотности потока вещества
диффундирующего i-го
компонента
с
какого-либо места изопотенциальной
поверхности Сi
= const
и
значением градиента концентрации gradСi
в
этом месте. Фик предположил, что имеется
прямая пропорциональность между
величинами
и
gradСi,
т.е.
.
Учитывая разнонаправленность указанных в векторов, имеем также
.
Чтобы перейти в (1.1) от пропорции к равенству, Фик ввел коэффициент пропорциональности Dij и получил зависимость
,
(1.2)
представляющую собой математическую запись его гипотезы.
Величина Dij, численно равная
(1.3)
называется коэффициентом взаимной диффузии i-го и j-го компонентов составляющих бинарную газовую смесь или образующих жидкий раствор.
гипотеза Фика была сформулирована для процессов массопроводности, определяемых лишь градиентом концентрации. Такие процессы протекают в бинарных и многокомпонентных газовых смесях, у которых бинарные коэффициенты диффузии всех пар компонентов веществ одинаковы, и в жидких растворах, когда в них отсутствует термо- и бародиффузия.