
- •3. 5. Вывод уравнения Фурье для одномерной задачи теплопроводности.
- •10.Нестационарная теплопроводность при гу 2
- •11. Безразмерная форма краевой задачи теплопроводности при гу-III-го рода
- •14. Сеточный метод решения одно- и двумерных задач нестационарной теплопроводности
- •15. Явная и неявная схемы численного определения температурных полей
- •13. Метод элементарного теплового баланса при численном решении задач теплопроводности.
- •17. Неявная схема численного решения двухмерной задачи теплопроводности
- •18.Физический принцип стационарности температурных полей.
- •19. Стационарное температурное поле в неограниченной пластине
- •20. Нелинейная стационарная теплопроводность в однослойной плоской стенке.
- •21. Стационарный тепловой поток через однослойную плоскую стенку при гу-I.
- •23. Стационарное температурное поле в полом цилиндре.
- •24.Стацтионарный тепловой поток через однослойный полый цилиндр при гу-I.
- •25.Стационарный тепловой поток через многослойный полый цилиндр при гу-I.
- •26. Стационарный тепловой поток через многослойный полый цилиндр при гу-III.
- •27. Стационарный тепловой поток через многослойную плоскую стенку при гу-III.
- •28. Вывод формулы для определения теплового потока через однослойный полый цилиндр.
- •29.Расчет величины плотности теплового потока в теле.
- •30.Температурный фактор задач конвективного теплообмена.
- •31.Схема Нуссельта для описания конвективного теплообмена.
- •32. Конвективный теплообмен при течении в трубах.
- •33.Внешняя и внутренняя задача конвективного теплообмена: особенности формирования теплового и гидродинамического пограничного слоёв, эффекты стабилизации
- •34.Переход течения на пластине из ламинарного в турбулентное и связанное с ним изменение нарастания толщины пограничного слоя и теплоотдачи
- •35.Особенности формирования динамического пограничного слоя во внешних задачах
- •36.Особенности формирования динамического пограничного слоя во внутренней задаче
- •37.Особенности формирования теплового пограничного слоя во внешней задаче
- •38.Особенности формирования теплового пограничного слоя во внутренней задаче
- •39.Стабилизация конвективного теплообмена по длине канала в ламинарном и турбулентном режимах течения
- •40.Теплообмен при свободной конвекции у вертикальной плиты
- •41.Третья (основная) теорема теории подобия и моделирования физических явлений
- •42.47.Вывод аргумента Ra для описания теплоотдачи при свободной конвекции
- •43.Вывод критериев подобия из рассмотрения уравнения нестационарного теплопереноса в потоке (уравнения Фурье-Кирхгофа)
- •44.Обоснование формы критериальных зависимостей для описания конвективного теплообмена
- •45.Критериальные формулы для описания теплообмена при свободной конвекции
- •46.Физический смысл критериев Re, Pr, Pe
- •48.Физическое обоснование условий, необходимых и достаточных для подобия явлений одной природы
- •49.Вывод критериев подобия из рассмотрения уравнения нестационарного течения (уравнения Навье - Стокса)
- •50.Температурный фактор в критериальных формулах для описания конвективного теплообмена
- •51.Критериальные формулы для описания конвективного теплообмена при обтекании пластины
- •52.Теплообмен при свободной конвекции в большом объёме
- •53.Тепловая изоляция труб и цилиндрических сосудов: обоснование выбора толщины изоляции
- •54.Конвективный теплообмен при турбулентном режиме течения в канале
- •55.Гидродинамика и теплообмен при поперечном обтекании одиночного цилиндра пучка труб.
- •56. Гидродинамика и теплообмен при обтекании коридорного и шахматного пучка труб
- •57.Основные законы равновесного теплового излучения твёрдых тел
- •58.Механизм излучения твёрдых тел, равновесное тепловое излучение. Закон Стефана-Больцмана
- •59.Определение результирующего лучистого теплового потока между твёрдыми телами и между газом и твёрдым телом
- •60.Особенности излучения газов. Степень черноты смеси газов
- •61.Метод расчёта результирующего лучистого потока энергии между твёрдыми телами и между газом и твёрдым телом
- •62.Роль экранов в лучистом теплообмене твёрдых тел. Экранно-вакуумная тепловая изоляция
- •63.Теплообмен при кипении жидкости в большом объёме
- •64.Условие существования газового пузырька
- •65.Кризис кипения в сосуде - механизм явления, интенсивность теплообмена
- •66.Критериальные зависимости для описания теплоотдачи при кипении
- •67.Кризис кипения движущейся жидкости – механизм явления и интенсивность кипения
- •68.Теплообмен при конденсации паров
- •69.Предпосылки теории Нуссельта для определения интенсивности теплоотдачи при конденсации
- •70.Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •70. Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •71.Теплообмен при волнообразовании и при турбулизации течения плёнки конденсата
- •72.Влияние неконденсирующихся газов и факторов эксплуатации конденсаторов паровых турбин на теплообмен при конденсации
- •74. Влияние неконденсирующихся газов в газовой смеси на теплообмен при конденсации
- •75.Основные элементы теории массопроводности. Гипотеза а. Фика: содержание, физический смысл, область применения.
- •76.Гипотеза а. Фика. Граничные условия уравнения массопроводности: гу-I,гу-II,гу-III,гу-IV рода.
- •78.Тройная аналогия между переносом тепла, вещества и количества движения
- •79.Обратные задачи теплопроводности, их особенности
- •80.Теплообмен в разряжённых газах
- •81.Теплообмен при больших дозвуковых скоростях газа
- •82.Способы интенсификации конвективного теплообмена
- •83.Оребрение теплообменных поверхностей
- •84.Основные требования, предъявляемые к теплообменным аппаратам
- •85.Классификация теплообменных аппаратов
- •86.Уравнения, лежащие в основе расчёта теплообменных аппаратов
- •86. Принципы теплового расчета теплообменника.
- •87.Определение среднего температурного напора
50.Температурный фактор в критериальных формулах для описания конвективного теплообмена
В
число аргументов для описания интенсивности
конвективного теплообмена при вынужденной
и свободной конвекции наряду с критериями
Pe,
Re,
Pr,
Ra
входит и температурный фактор
.
Величина числа Нуссельта при одинаковом значении Pe (Re и Pr) или Ra зависит существенно от того, нагревается или охлаждается движущаяся среда у поверхности твердого тела.
Причем для нагревающейся жидкости число Нуссельта больше, чем для охлаждающейся. У газов же это влияние направления теплового потока (от стенки в движущуюся среду или наоборот) противоположно.
Если капельная жидкость омывает теплую поверхность, то самые теплые ее слои находятся у поверхности, их вязкость мала. Из-за этого мала толщина формирующегося пограничного слоя, а следовательно, мало и термическое сопротивление теплопереносу.
Если же капельная жидкость омывает холодную поверхность, то все будет обстоять противоположным образом, так как у жидкостей с понижением температуры вязкость возрастает.
У газов же с понижением температуры вязкость уменьшается и поэтому у них при равных Pe (Re и Pr) или Ra числа Нуссельта будут больше при охлаждении, чем при нагревании.
Предложены
различные виды представления температурного
фактора
в структуре критериальных формул для
описания конвективного теплообмена.
В настоящее время рекомендованы к использованию в расчетной практике другие формулы:
а)
для капельных неметаллических жидкостей
,
где
f
и W
– коэффициенты динамической вязкости
движущейся среды, выбранные по температурам
и TW
соответственно.
При нагревании жидкости полагают p = 0,11, а при ее охлаждении имеем p = 0,25;
б)
динамическая вязкость газа пропорциональна
степенной функции термодинамической
температуры
~
При
нагревании газа и 1,0 < TW
/
< 3,5 принимают s=0,5.
Вопрос о введении
в структуру критериальных формул при
охлаждении газов еще нуждается в
уточнении и для этого случая до сих пор
полагают
1.
Влияние
отношения термодинамических температур
на теплоперенос в газах и принято
называть температурным фактором..
51.Критериальные формулы для описания конвективного теплообмена при обтекании пластины
Во внешней задаче по мере удаления потока от передней кромки пластины формируются динамический и тепловой пограничные слои, профили скорости и температуры при этом перестраиваются.
Существенными для развития процесса являются мера отношения силы инерции к силе вязкостного трения, т.е. критерий Рейнольдса, и мера отношения конвективного потока тепла к потоку тепла, переносимого теплопроводностью, т.е. критерий Пекле. Поэтому критериальная зависимость для описания конвективного теплообмена в рассматриваемой ситуации должна иметь вид
.
При переходе ламинарного пограничного слоя в турбулентный, образуется скачок (возрастает коэффициент теплоотдачи ), и если пластина омывается высокотемпературным потоком газа, то скачком возрастает и температура поверхности. С ростом температуры материала уменьшаются все известные пределы прочности (на разрыв, на кручение и т.д.), и если конструкция «нагружена» в силовом отношении, то в точке x=xкр она может начать разрушаться.
Особенно актуальна эта задача для рабочих лопаток высокотемпературных турбин авиационных двигателей, на спинке (точка а) и на корытце (точка б) которых наблюдается явление перехода течения в пограничном слое из ламинарного в турбулентное.