
- •3. 5. Вывод уравнения Фурье для одномерной задачи теплопроводности.
- •10.Нестационарная теплопроводность при гу 2
- •11. Безразмерная форма краевой задачи теплопроводности при гу-III-го рода
- •14. Сеточный метод решения одно- и двумерных задач нестационарной теплопроводности
- •15. Явная и неявная схемы численного определения температурных полей
- •13. Метод элементарного теплового баланса при численном решении задач теплопроводности.
- •17. Неявная схема численного решения двухмерной задачи теплопроводности
- •18.Физический принцип стационарности температурных полей.
- •19. Стационарное температурное поле в неограниченной пластине
- •20. Нелинейная стационарная теплопроводность в однослойной плоской стенке.
- •21. Стационарный тепловой поток через однослойную плоскую стенку при гу-I.
- •23. Стационарное температурное поле в полом цилиндре.
- •24.Стацтионарный тепловой поток через однослойный полый цилиндр при гу-I.
- •25.Стационарный тепловой поток через многослойный полый цилиндр при гу-I.
- •26. Стационарный тепловой поток через многослойный полый цилиндр при гу-III.
- •27. Стационарный тепловой поток через многослойную плоскую стенку при гу-III.
- •28. Вывод формулы для определения теплового потока через однослойный полый цилиндр.
- •29.Расчет величины плотности теплового потока в теле.
- •30.Температурный фактор задач конвективного теплообмена.
- •31.Схема Нуссельта для описания конвективного теплообмена.
- •32. Конвективный теплообмен при течении в трубах.
- •33.Внешняя и внутренняя задача конвективного теплообмена: особенности формирования теплового и гидродинамического пограничного слоёв, эффекты стабилизации
- •34.Переход течения на пластине из ламинарного в турбулентное и связанное с ним изменение нарастания толщины пограничного слоя и теплоотдачи
- •35.Особенности формирования динамического пограничного слоя во внешних задачах
- •36.Особенности формирования динамического пограничного слоя во внутренней задаче
- •37.Особенности формирования теплового пограничного слоя во внешней задаче
- •38.Особенности формирования теплового пограничного слоя во внутренней задаче
- •39.Стабилизация конвективного теплообмена по длине канала в ламинарном и турбулентном режимах течения
- •40.Теплообмен при свободной конвекции у вертикальной плиты
- •41.Третья (основная) теорема теории подобия и моделирования физических явлений
- •42.47.Вывод аргумента Ra для описания теплоотдачи при свободной конвекции
- •43.Вывод критериев подобия из рассмотрения уравнения нестационарного теплопереноса в потоке (уравнения Фурье-Кирхгофа)
- •44.Обоснование формы критериальных зависимостей для описания конвективного теплообмена
- •45.Критериальные формулы для описания теплообмена при свободной конвекции
- •46.Физический смысл критериев Re, Pr, Pe
- •48.Физическое обоснование условий, необходимых и достаточных для подобия явлений одной природы
- •49.Вывод критериев подобия из рассмотрения уравнения нестационарного течения (уравнения Навье - Стокса)
- •50.Температурный фактор в критериальных формулах для описания конвективного теплообмена
- •51.Критериальные формулы для описания конвективного теплообмена при обтекании пластины
- •52.Теплообмен при свободной конвекции в большом объёме
- •53.Тепловая изоляция труб и цилиндрических сосудов: обоснование выбора толщины изоляции
- •54.Конвективный теплообмен при турбулентном режиме течения в канале
- •55.Гидродинамика и теплообмен при поперечном обтекании одиночного цилиндра пучка труб.
- •56. Гидродинамика и теплообмен при обтекании коридорного и шахматного пучка труб
- •57.Основные законы равновесного теплового излучения твёрдых тел
- •58.Механизм излучения твёрдых тел, равновесное тепловое излучение. Закон Стефана-Больцмана
- •59.Определение результирующего лучистого теплового потока между твёрдыми телами и между газом и твёрдым телом
- •60.Особенности излучения газов. Степень черноты смеси газов
- •61.Метод расчёта результирующего лучистого потока энергии между твёрдыми телами и между газом и твёрдым телом
- •62.Роль экранов в лучистом теплообмене твёрдых тел. Экранно-вакуумная тепловая изоляция
- •63.Теплообмен при кипении жидкости в большом объёме
- •64.Условие существования газового пузырька
- •65.Кризис кипения в сосуде - механизм явления, интенсивность теплообмена
- •66.Критериальные зависимости для описания теплоотдачи при кипении
- •67.Кризис кипения движущейся жидкости – механизм явления и интенсивность кипения
- •68.Теплообмен при конденсации паров
- •69.Предпосылки теории Нуссельта для определения интенсивности теплоотдачи при конденсации
- •70.Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •70. Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •71.Теплообмен при волнообразовании и при турбулизации течения плёнки конденсата
- •72.Влияние неконденсирующихся газов и факторов эксплуатации конденсаторов паровых турбин на теплообмен при конденсации
- •74. Влияние неконденсирующихся газов в газовой смеси на теплообмен при конденсации
- •75.Основные элементы теории массопроводности. Гипотеза а. Фика: содержание, физический смысл, область применения.
- •76.Гипотеза а. Фика. Граничные условия уравнения массопроводности: гу-I,гу-II,гу-III,гу-IV рода.
- •78.Тройная аналогия между переносом тепла, вещества и количества движения
- •79.Обратные задачи теплопроводности, их особенности
- •80.Теплообмен в разряжённых газах
- •81.Теплообмен при больших дозвуковых скоростях газа
- •82.Способы интенсификации конвективного теплообмена
- •83.Оребрение теплообменных поверхностей
- •84.Основные требования, предъявляемые к теплообменным аппаратам
- •85.Классификация теплообменных аппаратов
- •86.Уравнения, лежащие в основе расчёта теплообменных аппаратов
- •86. Принципы теплового расчета теплообменника.
- •87.Определение среднего температурного напора
61.Метод расчёта результирующего лучистого потока энергии между твёрдыми телами и между газом и твёрдым телом
Излучение чистых газов отличается от излучения твердых тел. Во-первых, поглощение и излучение лучистой энергии газами всегда имеет резко выраженный селективный (выборочный) характер: например, спектр поглощения углекислоты и водяного пара состоит из нескольких полос, в пределах которых эти газы испускают (и поглощают) электромагнитную энергию (рис. 3.6).
Второе отличие излучения газов от излучения твердых тел заключается в том, что у газов оно имеет объемный характер (у твердых тел излучение электромагнитной энергии осуществляется с поверхности), так как нужна чрезвычайно большая толщина газового слоя, чтобы излучаемая глубинными элементами энергия была бы всецело поглощена самим газом и совершенно не проникла бы в окружающую среду.
Для
того чтобы рассчитать результирующий
лучистый поток тепла от газового тела
к поверхности охватывающего его твердого
тела, необходимо знать не только степень
черноты поверхности W,
но и степень черноты смеси газов г.
Рис. 3.6
В настоящее время г рекомендуют определять по формуле
,
(3.14)
где
и
– степень черноты компонентов газовой
смеси – излучателей электромагнитной
энергии;
– поправка на величину парциального
давления паров воды в газовой смеси;
– поправка на взаимное перекрывание
спектров излучения CO2
и H2O.
Все величины, входящие в правую часть
формулы (3.14), установлены экспериментально.
Степень
черноты каждого излучающего компонента
зависит от количества его молекул в
газовой смеси и от ее температуры Tг.
Количество молекул–излучателей
электромагнитной энергии, естественно,
пропорционально парциальному давлению
и
в газовой смеси, а также так называемой
толщине газового слоя l,
определяемой по формуле
где V – объем газового тела; F – площадь охватывающей его поверхности твердого тела. Таким образом, искомые степени черноты излучающих компонентов представляют в виде зависимостей
(3.15)
(3.16)
62.Роль экранов в лучистом теплообмене твёрдых тел. Экранно-вакуумная тепловая изоляция
Расчет результирующего лучистого потока энергии между телами, разделенными прозрачной средой, в общем случае, очень сложен, так как его величина зависит от многих факторов: от формы облучающих друг друга тел, от их взаимного расположения в пространстве, от степени черноты их поверхности и др. Не вдаваясь в детали, укажем на то, что для самого распространенного на практике случая, когда одно тело полностью охватывает другое тело, т.е. когда тело 1 находится в полости, образованной телом 2 (рис. 3.3), результирующий поток лучистого тепла подсчитывается по формуле
.
(3.11)
В том частном случае, когда рассматривается теплообмен излучением между двумя параллельными пластинами, в формуле (3.12) надо положить F1 = F2.
На практике часто между телами–пластинами приходится размещать параллельные им пластины–экраны (рис. 3.4), которые предназначены для того, чтобы уменьшить результирующий лучистый поток тепла. Экраны изготавливают, как правило, из фольги металлов, сплавов или диэлектриков. При наличии n экранов приведенная степень черноты систем тел 1 и 2 с плоскими экранами между ними определяется по формуле
(3.13)
Рассмотрение
формул (3.11) и (3.13) свидетельствует о том,
что если степени черноты поверхностей
плоских тел 1
и 2
и экранов совпадают друг с другом, то
установка одного экрана уменьшает
величину
ровно в два раза, а n
штук экранов уменьшает
в (n + 1)
раз. Тем самым становится очевидной
эффективность установки экранов между
горячим телом 1
и холодным телом 2
при необходимости защитить тело 2
от лучистого теплового потока.
Применение экранов используется при создании самой эффективной экранно–вакуумной тепловой изоляции тел, конструктивное выполнение которой на рис. 3.5 дано на примере тепловой защиты цилиндрической трубы 1, внутри которой движется жидкость.
Снаружи
труба 1
окружена системой концентрически
расположенных экранов 2
в виде цилиндрических оболочек из
фольги, отделенных друг от друга ребрами
жесткости 3.
Из пространства между экранами
вакуум-насосом удаляется воздух и между
ними возникает глубокое разрежение,
так что затруднен подвод (или отвод)
тепла конвекцией и излучением из
окружающей среды к поверхности трубы.