Добавил:
Выпускник УГАТУ Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
33
Добавлен:
01.02.2020
Размер:
4.65 Mб
Скачать

61.Метод расчёта результирующего лучистого потока энергии между твёрдыми телами и между газом и твёрдым телом

Излучение чистых газов отличается от излучения твердых тел. Во-первых, поглощение и излучение лучистой энергии газами всегда имеет резко выраженный селективный (выборочный) характер: например, спектр поглощения углекислоты и водяного пара состоит из нескольких полос, в пределах которых эти газы испускают (и поглощают) электромагнитную энергию (рис. 3.6).

Второе отличие излучения газов от излучения твердых тел заключается в том, что у газов оно имеет объемный характер (у твердых тел излучение электромагнитной энергии осуществляется с поверхности), так как нужна чрезвычайно большая толщина газового слоя, чтобы излучаемая глубинными элементами энергия была бы всецело поглощена самим газом и совершенно не проникла бы в окружающую среду.

Для того чтобы рассчитать результирующий лучистый поток тепла от газового тела к поверхности охватывающего его твердого тела, необходимо знать не только степень черноты поверхности W, но и степень черноты смеси газов г.

Рис. 3.6

В настоящее время г рекомендуют определять по формуле

, (3.14)

где и – степень черноты компонентов газовой смеси – излучателей электромагнитной энергии;  – поправка на величину парциального давления паров воды в газовой смеси;  – поправка на взаимное перекрывание спектров излучения CO2 и H2O. Все величины, входящие в правую часть формулы (3.14), установлены экспериментально.

Степень черноты каждого излучающего компонента зависит от количества его молекул в газовой смеси и от ее температуры Tг. Количество молекул–излучателей электромагнитной энергии, естественно, пропорционально парциальному давлению и в газовой смеси, а также так называемой толщине газового слоя l, определяемой по формуле

где V – объем газового тела; F – площадь охватывающей его поверхности твердого тела. Таким образом, искомые степени черноты излучающих компонентов представляют в виде зависимостей

(3.15) (3.16)

62.Роль экранов в лучистом теплообмене твёрдых тел. Экранно-вакуумная тепловая изоляция

Расчет результирующего лучистого потока энергии между телами, разделенными прозрачной средой, в общем случае, очень сложен, так как его величина зависит от многих факторов: от формы облучающих друг друга тел, от их взаимного расположения в пространстве, от степени черноты их поверхности и др. Не вдаваясь в детали, укажем на то, что для самого распространенного на практике случая, когда одно тело полностью охватывает другое тело, т.е. когда тело 1 находится в полости, образованной телом 2 (рис. 3.3), результирующий поток лучистого тепла подсчитывается по формуле

. (3.11)

В том частном случае, когда рассматривается теплообмен излучением между двумя параллельными пластинами, в формуле (3.12) надо положить F1 = F2.

На практике часто между телами–пластинами приходится размещать параллельные им пластины–экраны (рис. 3.4), которые предназначены для того, чтобы уменьшить результирующий лучистый поток тепла. Экраны изготавливают, как правило, из фольги металлов, сплавов или диэлектриков. При наличии n экранов приведенная степень черноты систем тел 1 и 2 с плоскими экранами между ними определяется по формуле

(3.13)

Рассмотрение формул (3.11) и (3.13) свидетельствует о том, что если степени черноты поверхностей плоских тел 1 и 2 и экранов совпадают друг с другом, то установка одного экрана уменьшает величину ровно в два раза, а n штук экранов уменьшает в (n + 1) раз. Тем самым становится очевидной эффективность установки экранов между горячим телом 1 и холодным телом 2 при необходимости защитить тело 2 от лучистого теплового потока.

Применение экранов используется при создании самой эффективной экранно–вакуумной тепловой изоляции тел, конструктивное выполнение которой на рис. 3.5 дано на примере тепловой защиты цилиндрической трубы 1, внутри которой движется жидкость.

Снаружи труба 1 окружена системой концентрически расположенных экранов 2 в виде цилиндрических оболочек из фольги, отделенных друг от друга ребрами жесткости 3. Из пространства между экранами вакуум-насосом удаляется воздух и между ними возникает глубокое разрежение, так что затруднен подвод (или отвод) тепла конвекцией и излучением из окружающей среды к поверхности трубы.

Соседние файлы в папке ТМО2010_ответы