
- •1. Механизм процесса теплопроводности в твёрдых телах, жидкостях и газах.
- •2. Гипотеза ж.-б. Фурье
- •3. Вывод уравнения Фурье для одномерной задачи теплопроводности
- •4. Вывод уравнения Фурье для многомерной задачи теплопроводности
- •5.Вывод уравнения Фурье для одномерного температурного поля
- •6Вывод уравнения Фурье для двумерного температурного поля
- •7.Краевые условия задач нестационарной теплопроводности
- •10Нестационарная теплопроводность при гу-III
- •11. Безразмерная форма краевой задачи теплопроводности при гу-III-го рода
- •12. Два типа инженерных задач, решаемых с помощью диаграмм Fо),
- •13. Метод элементарного теплового баланса при численном решении задач теплопроводности.
- •14. Сеточный метод решения одно- и двумерных задач нестационарной теплопроводности
- •15. Явная и неявная схемы численного определения температурных полей
- •16. Численная аппроксимация граничных условий I, II, III, IV рода
- •17. Неявная схема численного решения двухмерной задачи теплопроводности
- •18. Физический принцип стационарности температурных полей
- •19.Стационарное температурное поле в неограниченной пластине
- •20.Нелинейная стационарная теплопроводность в однослойной плоской стенке
- •21.Стационарный тепловой поток через однослойную плоскую стенку при гу-I
- •23.Стационарное температурное поле в полом цилиндре
- •24.Стационарный тепловой поток через однослойный полый цилиндр при гу-I
- •25.Стационарный тепловой поток через многослойный полый цилиндр при гу-I
- •26.Стационарный тепловой поток через многослойный полый цилиндр при гу-III
- •27.Стационарный тепловой поток через многослойную плоскую стенку при гу-III
- •28.Вывод формулы для определения теплового потока через однослойный полый цилиндр
- •29.Расчёт величины плотности теплового потока в теле
- •30.Температурный фактор задач конвективного теплообмена
- •31.Схема Нуссельта для описания конвективного теплообмена
- •32.Конвективный теплообмен при течении в трубах
- •33.Внешняя и внутренняя задача конвективного теплообмена: особенности формирования теплового и гидродинамического пограничного слоёв, эффекты стабилизации
- •34.Переход течения на пластине из ламинарного в турбулентное и связанное с ним изменение нарастания толщины пограничного слоя и теплоотдачи
- •35.Особенности формирования динамического пограничного слоя во внешних задачах
- •36.Особенности формирования динамического пограничного слоя во внутренней задаче
- •37.Особенности формирования теплового пограничного слоя во внешней задаче
- •38.Особенности формирования теплового пограничного слоя во внутренней задаче
- •39.Стабилизация конвективного теплообмена по длине канала в ламинарном и турбулентном режимах течения
- •40.Теплообмен при свободной конвекции у вертикальной плиты
- •41.Третья (основная) теорема теории подобия и моделирования физических явлений
- •42.Вывод аргумента Ra для описания теплоотдачи при свободной конвекции
- •43.Вывод критериев подобия из рассмотрения уравнения нестационарного теплопереноса в потоке (уравнения Фурье-Кирхгофа)
- •44.Обоснование формы критериальных зависимостей для описания конвективного теплообмена
- •45.Критериальные формулы для описания теплообмена при свободной конвекции
- •46.Физический смысл критериев Re, Pr, Pe
- •47. Повтор № 42
- •48.Физическое обоснование условий, необходимых и достаточных для подобия явлений одной природы
- •49.Вывод критериев подобия из рассмотрения уравнения нестационарного течения (уравнения Навье - Стокса)
- •50.Температурный фактор в критериальных формулах для описания конвективного теплообмена
- •51.Критериальные формулы для описания конвективного теплообмена при обтекании пластины
- •52.Теплообмен при свободной конвекции в большом объёме
- •53.Тепловая изоляция труб и цилиндрических сосудов: обоснование выбора толщины изоляции
- •54.Конвективный теплообмен при турбулентном режиме течения в канале
- •55.Гидродинамика и теплообмен при поперечном обтекании одиночного цилиндра пучка труб. 56. Гидродинамика и теплообмен при обтекании коридорного и шахматного пучка труб
- •57.Основные законы равновесного теплового излучения твёрдых тел
- •58.Механизм излучения твёрдых тел, равновесное тепловое излучение. Закон Стефана-Больцмана
- •59.Определение результирующего лучистого теплового потока между твёрдыми телами и между газом и твёрдым телом
- •60.Особенности излучения газов. Степень черноты смеси газов
- •61.Метод расчёта результирующего лучистого потока энергии между твёрдыми телами и между газом и твёрдым телом
- •62.Роль экранов в лучистом теплообмене твёрдых тел. Экранно-вакуумная тепловая изоляция
- •63.Теплообмен при кипении жидкости в большом объёме
- •64.Условие существования газового пузырька
- •65.Кризис кипения в сосуде - механизм явления, интенсивность теплообмена
- •66.Критериальные зависимости для описания теплоотдачи при кипении
- •67.Кризис кипения движущейся жидкости – механизм явления и интенсивность кипения
- •68.Теплообмен при конденсации паров
- •69.Предпосылки теории Нуссельта для определения интенсивности теплоотдачи при конденсации
- •70.Критериальные зависимости для описания теплообмена при плёночной конденсации паров
- •71.Теплообмен при волнообразовании и при турбулизации течения плёнки конденсата
- •72.Влияние неконденсирующихся газов и факторов эксплуатации конденсаторов паровых турбин на теплообмен при конденсации
- •73.Проблема Стефана
- •74. Влияние неконденсирующихся газов в газовой смеси на теплообмен при конденсации
- •75.Основные элементы теории массопроводности. Гипотеза а. Фика: содержание, физический смысл, область применения
- •76.Гипотеза а. Фика. Граничные условия уравнения массопроводности: гу-I,гу-II,гу-III,гу-IV рода
- •77.Основные понятия и числа подобия конвективного массобмена
- •78.Тройна аналогия между переносом тепла, вещества и количества движения
- •79.Обратные задачи теплопроводности, их особенности
- •80.Теплообмен в разряжённых газах
- •81.Теплообмен при больших дозвуковых скоростях газа
- •82.Способы интенсификации конвективного теплообмена
- •83.Оребрение теплообменных поверхностей
- •84.Основные требования, предъявляемые к теплообменным аппаратам
- •85.Классификация теплообменных аппаратов
- •86.Уравнения, лежащие в основе расчёта теплообменных аппаратов
- •87.Методы теплового расчёта теплообменных аппаратов
- •88.Принципы теплового расчёта теплообменных аппаратов
- •89.Определение среднего температурного напора
39.Стабилизация конвективного теплообмена по длине канала в ламинарном и турбулентном режимах течения
Теплообмен в канале определяется, как это было показано в 2.3, режимом течения и теплофизическими характеристиками движущейся среды, но независимо от них распределение интенсивности теплообмена по длине трубы имеет в соответствии с изложенным в 2.4 вид, приведенный на рис. 2.11.
Рис.
2.11
Отметим сразу, что рассматривается теплообмен в канале, на входе которого профиль скоростей уже стабилизировался, т.е. предполагается наличие предвключенного гидродинамического участка, на котором теплообмен отсутствует.
Вследствие этого при ламинарном режиме течения сила инерции становится пренебрежимо малой по сравнению с силой вязкостного трения, а мера их отношения – критерий Рейнольдса – вырождается и выпадает из числа аргументов для описания интенсивности теплообмена.
При турбулентном режиме течения даже при стабилизировавшемся профиле скорости вследствие турбулентных пульсаций в потоке существенными являются и инерционные силы и силы вязкостного трения, так что мера их отношения – критерий Re – должна быть включена в качестве аргумента для числа Nu. Турбулентные же пульсации температуры на участке стабилизировавшейся теплоотдачи приводят к тому, что существенным для интенсивности теплопереноса в потоке остается и критерий Pe.
Интенсивность
стабилизированного теплообмена (когда
)
при ламинарном течении определяется
в круглой трубе следующим образом:
а) если поверхность трубы является изотермической, то расчетная формула такова
3,66,
(2.41)
б) если плотность теплового потока в стенку трубы везде одинакова, то имеем
4,36.
(2.42)
Отсутствие критерия Pe в качестве аргумента для числа Nu в правой части последних двух формул объясняется тем, что в области стабилизировавшегося теплообмена количество тепла, переносимого конвекцией в направлении течения, пренебрежимо мало по сравнению с количеством тепла, переносимого механизмом теплопроводности по направлению к обтекаемой поверхности. Вследствие этого мера их отношения (критерий Pe) вырождается, т.е. также, наряду с критерием Рейнольдса, перестает быть аргументом для числа Nu. Следует иметь в виду, что приведенные рассуждения не относятся к жидким металлам и сильно ионизированным газам (плазме).
Формулы, полученные для описания теплообмена при ламинарном течении в круглой трубе, при определении теплоотдачи в трубах некруглого сечения с использованием их эквивалентного диаметра dэ лишены строгого обоснования, и их применение требует осмотрительности. В самом деле, расчеты показывают, что интенсивность теплообмена в сравниваемых трубах относительно мало отличается лишь у самого входа в теплообменный участок, а по мере удаления от него это различие существенно возрастает, становясь наибольшим для стабилизированных значений Nu. Так, например, при ламинарном течении в щелевом канале эквивалентный диаметр его поперечного сечения естественно равен удвоенной ширине и установленные точные значения числа Нуссельта для изотермической поверхности и постоянной плотности теплового потока в нее соответственно равны 7,54 и 8,24, в то время как числа Нуссельта для эквивалентной круглой трубы оказались бы равными 3,66 и 4,36.
Поэтому при расчете теплоотдачи в каналах с некруглой формой поперечного сечения следует обращаться к соответствующей справочной литературе.
Критериальные
формулы для описания теплообмена в этом
режиме течения (0 < Re
< 2320) призваны учесть наложение на
ламинарное течение жидкости (газа)
термической
свободной конвекции, которая возникает
при значительных разностях температур
потока и омываемой поверхности. При
этом если труба расположена горизонтально,
то на продольное движение жидкости
накладывается ее поперечное течение.
В том же случае, когда труба расположена
вертикально, на продольное движение
накладывается восходящее (температуры
трубы выше температуры потока) или
нисходящее течение. Учет влияния
свободной конвекции на вынужденное
ламинарное движение и теплообмен в
канале производят в том случае, когда
величина критерия Рэлея, вычисленная
с использованием в качестве характерного
размера внутреннего диаметра трубы,
соответствует неравенству
.
Предложено большое
количество экспериментальных зависимостей
для описания теплообмена при ламинарном
гравитационно-вязкостном течении. Наш
опыт их использования позволяет
предложить следующую критериальную
зависимость для горизонтально
расположенной круглой трубы с постоянной
температурой омываемой поверхности
:
.
(2.43)
Здесь
и
– искомые средние значения числа
Нуссельта и коэффициента теплоотдачи
на участке трубы длиною L;
и
– средние значения числа Нуссельта и
коэффициента теплоотдачи на участке
трубы длиною L,
рассчитанные по формулам для
ламинарного
вязкостного режима течения;
– критерий Рэлея. Если труба расположена
вертикально, то полученные по формуле
(2.43) значения Nu
и
уменьшаются на 15 % при совпадении
направлений вынужденного и свободного
движения, и увеличиваются на 15 % – в
противном случае.
При турбулентном режиме течения в канале (Re > 104) длина участка тепловой стабилизации в настоящее время принимается равной
и для описания теплообмена рекомендуется формула Крауссольда–Михеева, полученная на основании обработки огромного количества экспериментальных данных:
(2.44)
где
и
– средние значения числа Нуссельта и
коэффициента теплоотдачи на участке
трубы длиною L;
– критерий Рейнольдса;
– температурный фактор.
Функция
,
учитывающая влияние на теплообмен
расстояния от входа в канал, экспериментально
установлена И.Т. Аладьевым и табулирована
им. Для проведения расчетов нам
представилось полезным аппроксимировать
ее в виде
,
(2.45)
где
.
При больших
значениях
имеем
.