
- •Электростатика и постоянный ток
- •Электрический заряд и его свойства. Закон Кулона.
- •Электрическое поле. Напряженность электростатического поля.
- •Потенциальная энергия взаимодействия. Работа электростатического поля. Потенциал.
- •Связь напряженности электростатического поля и потенциала.
- •Потенциальные диаграммы. Поле заряженной плоскости.
- •Поток вектора напряженности. Теорема Гаусса.
- •Дивергенция вектора напряженности. Истоки и стоки электрического поля.
- •Электрический диполь. Диполь в однородном и неоднородном электрическом поле.
- •Циркуляция вектора напряженности электростатического поля. Интегральное условие потенциальности электростатического поля.
- •Ротор вектора. Дифференциальное условие потенциальности электрического поля.
- •Электроемкость уединенного проводника.
- •Конденсаторы. Плоский и цилиндрический конденсаторы.
- •Диэлектрики. Типы диэлектриков.
- •Поляризация диэлектриков. Вектор поляризации.
- •Свободные и связанные заряды. Диэлектрическая проницаемость среды.
- •Вектор электрического смещения. Теорема Гаусса для поля в веществе.
- •Граничные условия, преломлений линий е и d.
- •Энергия плоского конденсатора. Объемная плотность энергии электростатического поля.
- •Электрический ток. Условие существования тока. Плотность тока. Уравнение непрерывности.
- •Закон Ома для участка цепи и цепи, содержащей эдс. Закон Ома в дифференциальной форме.
- •Закон Джоуля Ленца в интегральной и дифференциальной формах.
- •Сторонние силы. Э.Д.С. Источника тока. Основные закономерности электрических цепей. Правила Кирхгофа.
- •Электрический ток в газах. Процессы ионизации и рекомбинации.
- •Электрический ток в вакууме. Термоэлектронная эмиссия.
- •Электромагнетизм
- •Сила Лоренца. Движение заряженных частиц в электромагнитном поле.
- •Сила Ампера. Рамка с током в магнитном поле. Закон Ампера.
- •Принцип суперпозиции магнитного поля. Закон Био-Савара-Лапласа.
- •Циркуляция вектора магнитной индукции. Закон полного тока.
- •Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.
- •Работа магнитного поля.
- •Магнитное поле в веществе. Намагниченность.
- •Напряженность магнитного поля. Закон полного тока.
- •Магнетики: диа-, пара-, и ферромагнетики.
- •Электромагнитная индукция. Закон Фарадея для электромагнитной индукции. Правило Ленца.
- •Потокосцепление, самоиндукция. Индуктивность.
- •Токи замыкания и размыкания цепи. Токи Фуко.
- •Система уравнений Максвелла в интегральной и дифференциальной формах.
- •Колебания и волны
- •Характеристики колебательных процессов. Гармонические колебания. Частота и фаза колебаний.
- •Векторная диаграмма гармонических колебаний.
- •Сложение колебаний одинакового направления и одинаковой частоты.
- •Сложение взаимноперпендикулярных колебаний. Фигуры Лиссажу.
- •Гармонические осцилляторы. Пружинный маятник.
- •Колебательный контур.
- •Одномерное волновое уравнение. Групповая скорость, связь ее с фазовой скорость. Дисперсия.
- •Интерференционные полосы равной толщины. Кольца Ньютона.
- •Дифракция волн. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •Простые задачи дифракции: дифракция на круглом отверстии, на круглом препятствии (по Френелю).
- •Интерферометры. Понятие о голографии.
- •Дифракция на одной щели.
- •Естественный и поляризованный свет. Поляризация света. Закон Малюса.
- •Поляризация при отражении и преломлении на границе диэлектрика. Закон Брюстера.
Конденсаторы. Плоский и цилиндрический конденсаторы.
Конденсатор - устройство для накопления заряда и энергии электрического поля.
Конденсаторы различаются по возможности изменения своей ёмкости:
Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
Электроёмкость
плоского конденсатора:
.
Электроёмкость
цилиндрического конденсатора:
,
где
.
Диэлектрики. Типы диэлектриков.
Диэлектриками называются вещества, которые в обычных условиях не проводят электрические токи или относятся к изоляторам.
Среди диэлектриков различают 3 основных класса:
Неполярные диэлектрики
Полярные диэлектрики
Ионные диэлектрики
Неполярные диэлектрики — состоят из неполярных молекул, у которых центры тяжести положительного и отрицательного зарядов совпадают. Следовательно, неполярные молекулы не обладают электрическим моментом и их электрический момент равен нулю. Примером практически неполярных диэлектриков, применяемых в качестве электроизоляционных, являются углеводородные материалы, нефтяные электроизоляционные масла, полиэтилен, полистирол и др. Но при замещении в неполярных полимерах некоторой части водородных атомов другими атомами или неуглеводородными радикалами получаются полярные вещества.
Полярные диэлектрики (дипольные) — состоят из полярных молекул, обладающих электрическим моментом. В таких молекулах из-за их асимметричного строения центры масс положительных и отрицательных зарядов не совпадают. К полярным диэлектрикам относятся фенолоформальдегидные и эпоксидные смолы, кремнийорганические соединения, хлорированные углеводороды и др.
Ионные диэлектрики (NaCl) при своём рождении уже обладают внутренней ориентацией + и -, но в отсутствие электрического поля в таких веществах нет остаточных поляризаций. Но если поместить его в поле, происходит деформация диполей и на поверхности возникают наведенные заряды.
Поляризация диэлектриков. Вектор поляризации.
Процесс диэлектрической поляризации состоит в смещении связанных зарядов под действием внешнего поля из мест своего равновесного закрепления. Смещенные полем заряды образуют систему электрических мультиполей (среди которых в силу электронейтральности молекул, основными являются диполи). В диполи «превращаются» атомы, молекулы, более сложные структурные единицы и сам диэлектрик в целом.
Для характеристики
явления поляризации (возникновения
поверхностных наведенных зарядов)
вводится количественная мера воздействия
поля на вещество (вектор поляризации
)
,
- электрический дипольный момент i-ой
молекулы.
,
- диэлектрическая восприимчивость. Она
показывает насколько данный диэлектрик
откликается на действие электрического
поля.
- связь между
и
.