
3. Характерной особенностью ионной связи является ее ненасыщаемость и
ненапрвленность. Ионная связь является прочной (энергия ионной связи, как
правило, больше энергии ковалентной), а потому ионные соединения, как
правило, тугоплавки и высококипящи.Другим предельным случаем
образования химической связи между электрически заряженными частицами
является металлическая связь.
ВАН-ДЕР-ВАА́ЛЬСОВА СВЯЗЬ (молекулярная связь) характерна для молекулярных кристаллов (см. МОЛЕКУЛЯРНЫЕ КРИСТАЛЛЫ). Наблюдается у ряда веществ между молекулами с ковалентным характером внутримолекулярного взаимодействия. Наличие межмолекулярного притяжения в этом случае возможно при согласованном движении валентных электронов в соседних молекулах. В любой момент времени электроны должны быть максимально удалены друг от друга и максимально приближены к положительным зарядам (ядрам молекулы). Тогда силы притяжения валентных электронов ядром соседней молекулы оказываются сильнее сил взаимного отталкивания электронов оболочек этих молекул. Подобное притяжение между флуктуирующими электрическими диполями получило название дисперсионного взаимодействия. Примером кристалла с молекулярной связью может служить кристаллическая решетка иода. Так, твердый иод имеет молекулярную кристаллическую решетку, в узлах которых находятся молекулы I2. Аналогичным образом построена кристаллическая решетка твердого диоксида углерода (сухой лед) — в узлах кристаллической решетки находятся молекулы CO2. Связь Ван-дер-Ваальса является наиболее универсальной, она возникает между любыми частицами, но это наиболее слабая связь, энергия ее примерно на два порядка ниже энергии ионной (см. ИОННАЯ СВЯЗЬ) и ковалентной (см. КОВАЛЕНТНАЯ СВЯЗЬ) связи. Поскольку дисперсионное взаимодействие оказывается очень слабым, молекулярные связи четко проявляются лишь в тех случаях, когда они возникают между атомами или молекулами. Молекулярная связь легко разрушается тепловым движением. Поэтому молекулярные кристаллы обладают низкими температурами плавления (например, парафин (см. ПАРАФИН)), большими коэффициентами теплового расширения, большой сжимаемостью, малой твердостью.
Металлическая связь характерна не только для металлов и их сплавов, но и для интерметаллических соединений, она сохраняется не только в твердых кристаллах, но и в расплавах и в аморфном состоянии. Металлическая связь, химическая связь, обусловленная взаимодействием электронного газа (валентные электроны) в металлах с остовом положительно заряженных ионов кристаллической решетки. Идеальная модель металлической связи отвечает образованию частично заполненных валентными электронами металла зон энергетических уровней, называемых зонами проводимости. При сближении атомов, образующих металл, атомные орбитали валентных электронов переходят в орбитали, делокализованные по кристаллич. решетке аналогично делокализованным p-орбиталям сопряженных соединений. Количественно описать металлическую связь можно только в рамках квантовой механики, качественно образование металлической связи можно понять исходя из представлений о ковалентной связи.
4. Дефекты кристаллического строения подразделяют по геометрическим признакам на 4 - е группы:
1. Точечные (нульмерные); Эти дефекты малы во всех трех измерениях и размеры их не превышают нескольких атомных диаметров. Вакансии образуются в результате перехода атомов из узлов решетки на поверхность, или их полного испарения с поверхности кристалла
2. Линейные (одномерные); Эти несовершенства имеют малые размеры в двух измерениях и большую протяженность в третьем измерении. Дефект имеет протяженность несколько межатомных расстояний.К линейным дефектам относятся дислокации, цепочки вакансий или цепочки межузельных атомов. Образуется дислокация при кристаллизации или сдвиге.
3. Поверхностные (двухмерные); Эти дефекты малы только в одном измерении. К ним относятся границы зерен, границы блоков, дефекты упаковки, двойниковые границы.
4. Объемные (трехмерное).
5. Вакансия (V) — от англ. vacancy — отсутствие атома или иона в узле кристаллической решетки, который в совершенном кристалле должен быть занят атомом (ионом). В веществе сложного состава свободным может оказаться узел, занимаемый разными атомами А или В. Типы точечных дефектов: 1 - вакансия; 2 - межузельный атом; 3 - дефект по Френкелю; 4 - примесный атом замещения; 5 - примесный атом внедрения; 6 - атом замещения большей валентности. Концентрация точечных дефектов равна нулю при температуре 0°К и быстро растет с повышением температуры. При этом увеличивается внутренняя энергия кристалла, но одновременно растет и его энтропия из-за увеличения беспорядка в расположении частиц. Для каждой температуры может быть такая концентрация точечных дефектов, при которой затрата энергии на образование точечных дефектов компенсируется приростом энтропии, т. е. сохраняется условие минимума внутренней энергии и кристалл остается в состоянии термодинамического равновесия. Эта равновесная концентрация точечных дефектов зависит от температуры n/Ne-E/kT, где N — общее число атомов в единице объема, n — число дефектов в том же объеме, E — энергия активации дефекта, равная работе его образования, k — постоянная Больцмана. Таким образом, даже в кристалле, находящемся в состоянии термодинамического равновесия, всегда присутствуют точечные дефекты.
6. Диффузия — это обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры. Диффундировать могут как собственные атомы решетки (самодиффузия или гомодиффузия), так и атомы других химических элементов, растворенных в полупроводнике (примесная или гетеродиффузия), а также точечные дефекты структуры кристалла — междоузельные атомы и вакансии. Основными механизмами перемещения атомов по кристаллу могут быть: прямой обмен атомов местами — а; кольцевой обмен — б; перемещение по междоузлиям — в; эстафетная диффузия — г; перемещение по вакансиям — д; диссоциативное перемещение — е; миграция по протяженным дефектам (дислокациям, дефектам упаковки, границам зерен). Плотность потока вещества J [cm-2s-1] пропорциональна коэффициенту диффузии D [(cm2s-1)] и градиенту концентрации. Это уравнение выражает первый закон Фика. Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии): дС/дt=D*д2С/дx2
Толщина диффузионного слоя x в зависимости от продолжительности процесса τ при данной температуре обычно выражается параболической зависимостью. Следовательно, с течением времени скорость увеличения толщины слоя непрерывно уменьшается (рис. 1,а). толщина диффузионного слоя, при прочих равных условиях, тем больше, чем выше концентрация диффундирующего элемента на поверхности металла (рис. 1,в).
Концентрация
диффундирующего элемента на поверхности
зависит от активности окружающей среды,
обеспечивающий приток атомов этого
элемента к поверхности, скорости
диффузионных процессов, приводящих к
переходу этих атомов в глубь металла,
состава обрабатываемого металла, состава
и структуры образующихся фаз. Повышение
температуры, увеличивает скорость
процесса диффузии, поэтому толщина
диффузионного слоя, образующегося за
данный отрезок времени, сильно возрастает
с повышением температуры процесса (рис.
1,в).
7.
ДИСЛОКАЦИИ(от позднелат. dislocatio —
смещение), дефекты кристалла, представляющие
собой линии, вдоль и вблизи к-рых нарушено
характерное для кристалла правильное
расположение плоскостей. Механические
свойства кристаллов — прочность и
пластичность в значительной мере
обусловлены существованием и их
движением. Плотность дислокаций
изменяется в широких пределах и зависит
от состояния материала. После тщательного
отжига плотность дислокаций составляет
105…107 м-2, в кристаллах с сильно
деформированной кристаллической
решеткой плотность дислокаций достигает
1015…10 16 м –2. Плотность дислокации в
значительной мере определяет пластичность
и прочность материала (рис. 2.5)
8.
9. Трансляционное скольжение по плоскостям (рис. 6.5 а). Одни слои атомов кристалла скользят по другим слоям, причем они перемещаются на дискретную величину, равную целому числу межатомных расстояний.В промежутках между полосами скольжения деформация не происходит. Твердое тело не изменяет своего кристаллического строения во время пластической деформации и расположение атомов в элементарных ячейках сохраняетсяПлоскостями скольжения является кристаллографические плоскости с наиболее плотной упаковкой атомов.Это наиболее характерный вид деформации при обработке давлением.
Двойникование – поворот одной части кристалла в положение симметричное другой его части. Плоскостью симметрии является плоскость двойникования (рис. 6.5 б).
Двойникование чаще возникает при пластической деформации кристаллов с объемно-центрированной и гексагональной решеткой, причем с повышением скорости деформации и понижением температуры склонность к двойникованию возрастает.
Двойникование может возникать не только в результате действия внешних сил, но и в результате отжига пластически деформированного тела. Это характерно для металлов с гранецентрированной кубической решеткой (медь, латунь). Двойникованием можно достичь незначительной степени деформации. ПОЛЗУЧЕСТЬ - крип (англ. creep), - медленное нарастание пластической деформации материала при силовых воздействиях меньших, чем те, которые могут вызвать остаточную деформацию при испытаниях обычной длительности. Ползучесть сопровождается релаксацией напряжений. диффузионная ползучесть реализуется при очень высоких температурах порядка (0,8...0,9).
10. Деформационное упрочнение (наклеп, нагартовка) металлов – непрерывное повышение приведенного напряжения сдвига по мер увеличения пластической деформации Деформационное упрочнении широко используется для получения высокопрочной проволоки с содержанием 0,8-0,9 % С. Структура стали должна представлять собой феррито-карбидную смесь тонко пластинчатого строения. Такая структура может быть получена методом патентирования. Текстуры деформации При холодной прокатке металлов, имеющих решетку объемноцентрированного куба, многие зерна ориентируются так, что в плоскости листа устанавливается грань куба (100), а для металлов с решеткой гранецентрированного куба — диагональная плоскость (110). Указанные кристаллографические плоскости ориентируются в направлении прокатки соответственно следующим образом: [110] и [112].При волочении медной или алюминиевой проволоки пространственная диагональ [111] или ребро куба [100] устанавливается параллельно оси проволоки или направлению вытягивания, а при волочении железной проволоки — параллельно направлению тянущей силы устанавливается диагональ грани куба [101].[4]
11. Рассмотрим холодную пластическую деформацию поликристалла. Пластическая деформация металлов и сплавов как тел поликристаллических, имеет некоторые особенности по сравнению с пластической деформацией монокристалла.
Деформация поликристаллического тела складывается из деформации отдельных зерен и деформации в приграничных объемах. Отдельные зерна деформируются скольжением и двойникованием, однако взаимная связь зерен и их множественность в поликристалле вносят свои особенности в механизм деформации.
Плоскости скольжения зерен произвольно ориентированны в пространстве, поэтому под влиянием внешних сил напряжения в плоскостях скольжения отдельных зерен будут различны. Деформация начинается в отдельных зернах, в плоскостях скольжения которых возникают максимальные касательные напряжения. Соседние зерна будут разворачиваться и постепенно вовлекаться в процесс деформации. Классический закон Холла - Петча описывает соотношение между пределом текучести (σT) и размером зерна (d) поликристаллического зерна:
σT = σ0 + K*d-1/2
где σ0 некоторое напряжение трения, которое необходимо для скольжения дислокаций в монокристалле, а К - материальная константа, также называемая "коэффициентов Холла - Петча".
Закон действует для поликристаллов с размером зерна большим 1мкм.
С появлением наноматериалов с размером зерна порядка нескольких десятков нанометров данный закон в той или иной мере нарушается.
12. Разрушение может быть хрупким и вязким. Механизм зарождения трещин одинаков как при хрупком, так при вязком разрушении. озникновение микротрещин чаще происходит благодаря скоплению движущихся дислокаций (пластической деформации) перед препятствием (границами зерен, межфазными границами, перед возможными включениями) образуя зародыш трещины. Вязкое и хрупкое разрушение различаются между собой по величине пластической зоны у вершины трещины. При хрупком разрушении величина пластической зоны в устье трещины мала. При вязком разрушении величина пластической зоны, идущей впереди распространяющейся трещины, велика, а сама трещина затупляется у своей вершины. Вязкое разрушение обусловлено малой скоростью распространения трещины. Скорость распространение хрупкой трещины достигает 2500 м/с. Поэтому нередко хрупкое разрушение называют «внезапным», или «катастрофическим» разрушением.
— хрупкий (светлый) излом, поверхность которого характеризуется наличием блестящих плоских участков; такой излом свойственен хрупкому разрушению;
— вязкий (матовый) излом, поверхность разрушения которого содержит весьма мелкие уступы – волокна, образующие при пластической деформации зерен в процессе разрушения; этот излом свидетельствует о вязком разрушении.
Хладноломкость склонность металлов к появлению (или значительному возрастанию) хрупкости (См. Хрупкость) при понижении температуры. Х. связана с происходящим при этом из-за затруднённости движения дислокаций (См. Дислокации) значительным повышением предела текучести; начиная с некоторой температуры (т. н. критическая температура хрупкости, или порог хладноломкости) хрупкое разрушение наступает раньше, чем состояние пластической текучести. Х. присуща низколегированным сталям, танталу, вольфраму, хрому, молибдену и некоторым др. металлам с объёмноцентрированной кубической решёткой и сплавам на их основе. Х. способствует наличие примесей внедрения в металлах, что в сочетании со сжатием кристаллической решётки при понижении температуры приводит к увеличению внутренних напряжений. Температура перехода от вязкого разрушения к хрупкому зависит от режима термической обработки, величины зерна, скорости нагружения, величины концентрации напряжений. Чаще всего Х. оценивают путём испытаний на ударный изгиб призматических образцов с надрезом, определяя при этом работу деформации и разрушения. Склонность к Х. можно также оценить по температуре резкого снижения пластичности или по доле волокнистого излома на поверхности разрушения. Х. имеет особое значение при эксплуатации конструкций в температурных условиях северных районов, для космических аппаратов, луноходов, водородных двигателей. Снижение Х. достигается очисткой металлов от вредных примесей, термообработкой, легированием.
13. При большом повышении температуры подвижность атомов возрастает и среди вытянутых зерен идет интенсивное зарождение и рост равноосных зерен. В результате металл приобретает структуру и свойства, которые имел до наклепа. Это явление называется рекристаллизацией.
14. Температура рекристаллизации.
Наиболее низкая температура, при которой искаженная зеренная структура деформированного в холодном состоянии металла заменяется новой, свободной от напряжений зеренной структурой в процессе длительного нагрева. Время, чистота металла и степень деформации — очень важные факторы. Минимальная температура, при которой за заданный промежуток времени происходит полная рекристаллизация холоднодеформированного металла.
При низких температурах подвижность атомов мала, поэтому состояние наклепа может сохраняться неограниченно долго.
При повышении температуры металла в процессе нагрева после пластической деформации диффузия атомов увеличивается и начинают действовать процессы разупрочнения, приводящие металл в более равновесное состояние – возврат и рекристаллизация.
Возврат. Небольшой нагрев вызывает ускорение движения атомов, снижение плотности дислокаций, устранение внутренних напряжений и восстановление кристаллической решеткиПроцесс частичного разупрочнения и восстановления свойств называется отдыхом (первая стадия возврата). Имеет место при температуре T=(0.25….0.3)Tпл Возврат уменьшает искажение кристаллической решетки, но не влияет на размеры и форму зерен и не препятствует образованию текстуры деформации.
Полигонизация – процесс деления зерен на части: фрагменты, полигоны в результате скольжения и переползания дислокаций.При температурах возврата возможна группировка дислокаций одинаковых знаков в стенки, деление зерна малоугловыми границами Рассмотрим холодную пластическую деформацию монокристалла. Под действием внешних сил в монокристалле возникают напряжения. Пока эти напряжения не превысили вполне определенной для данного металла величины (называемой пределом упругости), происходит упругая деформация. При упругой деформации атомы отклоняются с мест устойчивого равновесия на расстояния, не превышающие межатомные. После снятия нагрузки под действием межатомных сил атомы возвращаются в прежние места устойчивого равновесия, форма тела восстанавливается, при этом изменений в строении и свойствах металла не происходит. Упругая деформация сопровождается незначительным обратимым изменением объема тела, которое, например, для меди при напряжениях сжатия 100 кг/млti2 (980 Мн/м2) составляет 1,3%.
15. Термодинамические потенциалы (термодинамические функции) — характеристические функции в термодинамике, убыль которых в равновесных процессах, протекающих при постоянстве значений соответствующих независимых параметров, равна полезной внешней работе. Фазовое равновесие одновременное существование термодинамически равновесных фаз в многофазной системе. Простейшие примеры – равновесие жидкости со своим насыщенным паром, равновесие воды и льда при температуре плавления, расслоение смеси воды с триэтиламином на два несмешивающихся слоя (две фазы), отличающихся концентрациями. В равновесии могут находиться (в отсутствии внешнего магнитного поля) две фазы ферромагнетика с одинаковой осью намагничивания, но различным направлением намагниченности; нормальная и сверхпроводящая фазы металла во внешнем магнитном поле и т.д.
Второй закон ТЕРМОДИНАМИКИ
фундаментальный закон, согласно которому процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную (например, тепло горячего предмета самопроизвольно стремится рассеяться в более холодной среде).
16. фа́за — термодинамически однородная по свойствам часть термодинамической системы, отделенная от других фаз поверхностями раздела, на которых скачком изменяются некоторые свойства системы
17. КРИСТАЛЛИЗАЦИЯ
Переход из жидкого состояния в твердое (кристаллическое) называют кристаллизацией. Процессы кристаллизации зависят от температуры и протекают во времени, поэтому кривые охлаждения строятся в координатах температура - время (рис. 3). Теоретический, т. е. идеальный процесс кристаллизации металла без переохлаждения протекает при температуре Т 5 (рис. 3). При достижении идеальной температуры затвердевания Т 5 падение температуры прекращается. Это объясняется тем, что перегруппировка атомов при формировании кристаллической решетки идет с выделением тепла (выделяется скрытая теплота кристаллизации). Каждый чистый металл (не сплав) кристаллизуется при строго индивидуальной постоянной температуре. По окончании затвердевания металла температура его снова понижается. Сначала образовавшиеся кристаллы растут свободно и имеют более или менее правильную геометрическую форму (рис. 4, в, г, д). Затем при соприкосновении растущих кристаллов их правильная форма нарушается, так как в этих участках рост граней прекращается. Рост кристалла продолжается только в тех направлениях, где есть свободный доступ жидкого металла. В результате кристаллы, имевшие сначала геометрически правильную форму, после затвердевания получают неправильную форму, их называют кристаллитами или зернами (рис. 4,е).
Величина зерен зависит от числа центров кристаллизации и скорости роста кристаллов. Чем больше центров кристаллизации, тем мельче зерно металла.
Величина зерен, образующихся при кристаллизации, зависит не только от количества самопроизвольно зарождающихся центров кристаллизации, но также и от количества нерастворимых примесей, всегда имеющихся в жидком металле. Такие нерастворимые примеси являются готовыми центрами кристаллизации. Ими являются окислы (например, Al2O3), нитриды, сульфиды и другие соединения. Центрами кристаллизации в данном металле или сплаве могут быть только такие твердые частицы, которые соизмеримы с размерами атомов основного металла. Кристаллическая решетка таких твердых частиц должна быть близка по своему строению и параметрам решетке кристаллизующегося металла. Чем больше таких частичек, тем мельче будут зерна закристаллизовавшегося металла.
На образование центров кристаллизации влияет и скорость охлаждения. Чем выше скорость охлаждения, тем больше возникает центров кристаллизации и, следовательно, мельче зерно металла.
Чтобы получить мелкое зерно, создают искусственные центры кристаллизации. Для этого в расплавленный металл (расплав) вводят специальные вещества, называемые модификаторами. Модифицирование отливок проводят введением в расплав добавок, которые образуют тугоплавкие соединения (карбиды, окислы). При модифицировании, например, стали применяют алюминий, титан, ванадий; алюминиевых сплавов — марганец, титан, ванадий.
18. Зародыши К. Переохлажденная среда может долго сохранять, не кристаллизуясь, неустойчивое метастабильное состояние (например, мелкие, диаметром 0,1 мм капли хорошо очищенных металлов можно переохладить до температуры Кристаллизация 0,8 Тпл). Однако при достижении некоторого предельного для данных условий критического переохлаждения в жидкости или паре почти мгновенно возникает множество мелких кристалликов (зародышей). Происходит спонтанная К. Возникшие кристаллики растут и, т. к. переохлаждение уменьшается, новые зародыши, как правило, больше не возникают. Критическое переохлаждение зависит от температуры, концентрации, состава среды, её объёма, от присутствия посторонних частиц (например, пылинок, на которых образуются зародыши, кристалликов др. веществ и т. п.), от материала и состояния поверхности стенок сосуда, от интенсивности перемешивания, действия излучений и ультразвука.
При зарождении атомы или молекулы кристаллизующегося вещества объединяются в кристаллические агрегаты. Объединение частиц в агрегат уменьшает свободную энергию системы, а появление новой поверхности — увеличивает. Чем меньше агрегат, тем большая доля его частиц лежит на поверхности, тем больше роль поверхностной энергии. Поэтому с увеличением размера r агрегата работа А, требующаяся для его образования, вначале увеличивается, а затем падает (рис. 1). Агрегат, для которого работа образования максимальна, называется критическим зародышем (rкр). Чем меньше работа образования зародыша, тем вероятнее его появление. С этим связано преимущественное зарождение на посторонних частицах (в особенности заряженных), на поверхностях твёрдых тел и на их дефектах. Такое зарождение называется гетерогенным. При К. на поверхности твёрдого тела зарождение происходит преимущественно на неоднородностях поверхности. При этом кристаллики «декорируют» дефекты и неоднородности. Гомогенное зарождение в объёме чистой жидкости возможно лишь при очень глубоких переохлаждениях. С понижением температуры и с ростом переохлаждения уменьшается работа образования зародыша, но одновременно падает и вязкость жидкости, а с нею и частота присоединения новых частиц к кристаллическим агрегатам. Поэтому зависимость скорости зарождения от температуры имеет максимум (рис. 2). При низких температурах подвижность частиц жидкости столь мала, что расплав твердеет, оставаясь аморфным, — возникает стекло.
19. Влияние примесей на процесс кристаллизации
Часто источником образования зародышей являются всевозможные твердые частицы (примеси - неметаллические включения, окислы и т.д.). Частицы примеси должны иметь одинаковую кристаллическую решетку с затвердевающим металлом, параметры решетки могут отличаться не более чем на 9%.
Наличие примесей приводят и уменьшают размер, работы его образования, затвердевание жидкости начинается при меньшем температуре, чем при самопроизвольном зарождении.
Чем больше примесей, тем больше центров кристаллизации, тем мельче получается зерно (гетерогенное образование зародышей).
Примеси делятся:
1) влияющие на число зародышей (взвешенные примеси);
2) изменяющие свободную энергию системы (растворенные примеси в жидком металле - при затвердевании осаждаются в виде тонкого слоя на поверхности растущего кристалла, что приводит к уменьшению поверхностной энергии);
Модифицирование - использование специально вводимых в жидкий металл примесей (модификаторов) для получения мелкого зерна по описанному выше механизму.
Эти примеси не изменяют химического состава сплава, но измельчают зерно, улучшая свойства металла.
Виды примесей:
1) тугоплавкие соединения (влияют на число центров кристаллизации - ТiC, VC, VN, NbC, Al2O3 - нитриды, карбиды, оксиды - кристаллизуются в первую очередь); для стали применяют - Al, V, Ti;
2) поверхность активные модификаторы: для никелевых и железных сплавов - В (бор), для чугуна Мg (магний).
20. При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется.Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым.Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зависимость энергии системы от размера зародыша твердой фазы представлена на.Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию. Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело. Процесс вначале ускоряется, пока столкновение кристаллов не начинает препятствовать их росту. Объем жидкой фазы, в которой образуются кристаллы уменьшается. После кристаллизации 50 % объема металла, скорость кристаллизации будет замедляться.
Таким образом, процесс кристаллизации состоит из образования центров кристаллизации и роста кристаллов из этих центров.
Скорость каждого из процессов (зарождения и роста кристаллов) зависит от степени переохлажд. (n) жидкости относительно равновесной t, т.е t, при которой энергии Гиббса жидкого и кристаллического состояния равны. При n=0 образование зародышей кристаллов (центров кристаллизации) невозможно, поскольку равен нулю движущий фактор процесса (разность энергий Гиббса жидкого и тв. состояний). С увеличением переохлажд. эта разность растет, вызывая увеличение скорости возник.новения центров (Числа центров — ч.ц.) и скорости роста кристаллов (с.к.). Однако, с увеличением n снижается дифф. подвижность атомов, что вызывает торможение обоих элементарных процессов. При значительном переохлажд. атомы становятся столь малоподвижными, что кристаллизация полностью подавляется.
При небольших знач.х n (при малых величинах ч.ц. и больших с.к.) образуются крупнозернистые структуры. С увеличением переохлажд. структуры измельчаются (ч.ц. возрастает быстрее, чем с.к.).
От степени переохлажд. зависит критический размер зародыша, т.е такой минимальный размер, при котором рост зародыша сопровождается снижением энергии Гиббса системы. Зародыши мельче критического к росту не способны и растворяются в жидкости. Чем больше степень переохлажд. жидкости, тем мельче критическая величина зародыша.
На кривой охлажд. полученной при кристаллизации метал.ла в момент появления 1-го кристалла в жидкости t стабилизировалась. Площадка на кривой охлажд. имеет место до тех пор, пока последняя капля жидкости не исчезнет. Последующее охлажд. осуществляется уже в тв. состоянии за счет конвективного теплообмена. Появление площадки на кривой охлажд. обусловлено тем, что в момент появления первых кристаллов выделяется скрытая теплота кристаллизации, которая и компенсирует охлажд..
21 Если два компонента в жидком состоянии образуют однородный жидкий раствор, то при затвердевании получается сплав. При этом, в зависимости от природы компонентов, составляющих сплав, могут образоваться сплавы одного из трех типов:
1) сплав — механическая смесь компонентов;
2) сплав твердый раствор компонентов;
3) сплав — химическое соединение компонентов.
Сплавы — механические смеси неоднородны и представляют мельчайшую смесь кристаллитов компонентов.Сплавы — твердые растворы и сплавы химические соединения однородны, причем первые могут образоваться при различном соотношении компонентов растворителя и растворимого, а вторые только при строго определенном весовом соотношении компонентов, как всякое химическое соединение.В сплавах — твердых растворах атомы растворимого либо замещают атомы растворителя в кристаллической решетке, либо внедряются в нее, а сплавы — химические соединения образуют новую, особую кристаллическую решетку. МЕХАНИЧЕСКАЯ СМЕСЬ (в металловедении) - строение сплава из двух компонентов, которые неспособны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединений. Сплав состоит из кристаллов компонентов А и Б.
22. При изменении внешних условий — температуры и давления — в сплаве могут происходить превращения — переход из твердого состояния в жидкое, взаимное растворение компонентов, аллотропические превращения, образование химических соединений. Все эти превращения всегда направлены к тому, чтобы система сплава снова пришла в устойчивое состояние, нарушенное изменением внешних условий.
Как было сказано ранее, фазой называют физически и химически однородную часть сплава, которая отделена от других однородных частей сплава «поверхностью раздела». Следовательно, сплав в жидком состоянии представляет собой обычно однофазную систему. Сплав, состоящий из смеси кристаллов двух твердых растворов, имеет две фазы; сплав, являющийся однородным твердым раствором, однофазен и т. д.
Возможность изменения температуры, давления или концентрации без изменения числа фаз называют степенью свободы системы (сплава). Например, если число степеней свободы равно единице, то можно изменить только один из названных факторов, чтобы число фаз сплава не изменилось. Количественную зависимость между числом степеней свободы системы и числом компонентов и фаз принято называть правилом фаз. ТВЕРДЫЕ РАСТВО́РЫ, однородные твердые вещества, состоящие из нескольких компонентов, концентрации которых могут быть изменены в некоторых пределах при данных температуре, давлении и т. п. без нарушения однородности. Признаком образования твердого раствора является сохранение типа решетки компонента растворителя, сопровождающееся изменением размера элементарной ячейки. Таким образом, твердый раствор, состоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу. Отсюда следует, что неограниченная растворимость возможна только в том случае, если исходные компоненты обладают решеткой одного типа. Если твердый раствор образуется на основе соединения, то возможен еще один тип твердых растворов — растворы вычитания. В твердых растворах вычитания один из элементов, образующих соединение, присутствует в количестве, превышающем формульное (как бы растворен в соединении стехиометрического состава), но при этом занимает в решетке соединения присущие ему позиции, а соответствующая часть позиций другого элемента остается незанятой (вакантной). В некоторых сплавах (например, Cu—Au, Fe—Si, Ni—Mn), образующих при высоких температурах растворы замещения, при медленном охлаждении или длительном нагреве при определенных температурах протекает процесс перераспределения атомов, в результате которого атомы компонентов занимают определенные положения в кристаллической решетке. Такие растворы, устойчивые при сравнительно низких температурах, получили название упорядоченных твердых растворов. Если у двух металлов с одинаковыми кристаллическими решетками сильно различаются атомные радиусы, то образование твердых растворов между этими металлами сильно искажает кристаллическую решетку, что приводит к накоплению в решетке упругой энергии когда это искажение достигает определенной величины, кристаллическая решетка становится неустойчивой и наступает предел растворимости., Итак, вторым условием образования неограниченных твердых растворов является достаточно малое различие атомных размеров компонентов. Наконец, замечено, что неограниченная растворимость наблюдается преимущественно у элементов, близко расположенных друг от друга в периодической таблице Д. И. Менделеева, т. е. близких друг к другу по строению валентной оболочки атомов, по физической природе.
Если кристаллические решетки и неодинаковы, но близки, похожи, например гранецентрированные кубические и тетрагональные, то возможен плавный переход от одной решетки к другой с образованием и в этом случае неограниченного твердого раствора.
23. Химическое соединение – однородное вещество постоянного или переменного состава с качественно отличным химическим или кристаллохимическим строением, образованное из атомов одного или нескольких элементов.
Характерной особенностью химического соединения является однородность. Особенности этих сплавов:
1Постоянство состава, то есть сплав образуется при определенном соотношении компонентов, химическое соединение обозначается Аn Вm/
2Образуется специфмческая, отличающаяся от решеток элементов, составляющих химическое соединение, кристаллическая решетка с правильным упорядоченным расположением атомов (рис. 4.2)
3Ярко выраженные индивидуальные свойства
4Постоянство температуры кристаллизации, как у чистых компонентов
24. ДИАГРА́ММА СОСТОЯ́НИЯ, диаграмма равновесия, фазовая диаграмма, графическое изображение равновесных фазовых состояний одно- или многокомпонентных систем при разных значениях параметров, определяющих эти состояния. Диаграммы состояния изображают фазовый состав системы при разных концентрациях компонентов (Х), температурах (Т) и давлении (Р). Диаграмма состояния с неограниченной растворимостью компонентов
Если два компонента неограниченно растворяются в жидком и твердом состояниях, то возможно существование только двух фаз - жидкого раствора Ж (L) и твердого раствора (). Следовательно, трех фаз быть не может, кристаллизация не наблюдается при постоянной температуре и горизонтальной линии на диаграмме нет.
При температуре выше линии tАаtВ, называемой линией ликвидус, существует только жидкая фаза Ж. В этой области свободная энергия жидкой фазы Fж ниже свободной энергии твердого раствора F, состоящего из компонентов А и В.
В области ниже линии tАбtВ, называемой линией солидус, устойчив - твердый раствор, так как F < Fж.
Между линиями ликвидус и солидус в равновесии находятся жидкая фаза и -твердый раствор.
Диаграмма состояния строится методом термического анализа.
Кристаллизация чистого компонента А: равномерное понижение температуры до значения tА (температура плавления компонента А), при которой компонент А затвердевает (до tА - С = 1 + 1 - 1 = 1). На кривой отмечается остановка (горизонтальная линия), так как согласно правилу фаз только при этой температуре одновременно могут существовать две фазы - твердая и жидкая (С=1+1-2=0). После затвердевания (Ф = 1), температура снова равномерно понижается С = 1 + 1 - 1 = 1. Аналогично для компонента В (рисунок 1).
При охлаждении сплава I температура понижается до t1 (C=2+1-1=2), при которой начинается кристаллизация, на кривой охлаждения наблюдается перегиб, связанный с уменьшением скорости охлаждения вследствие выделения скрытой теплоты кристаллизации.
Начиная от температуры t1, из Ж-фазы кристаллизуется твердый раствор. Процесс кристаллизации идет при понижающейся температуре (С=2+1-2=1), существует две фазы: Ж и .
При достижении t2 сплав затвердевает и при более низких температурах существует только - твердый раствор.
Если найденные точки перенести на диаграмму, и одноименные точки соединить плавными линиями, то получится диаграмма состояния системы сплавов А и В, образующих непрерывный ряд твердых растворов (рисунок 1).
В интервале температур между линиями ликвидус и солидус две фазы - жидкий сплав и - твердый раствор. правило фаз Гиббса — соотношение, связывающее число веществ (компонентов), фаз и степеней свободы в гетерогенной системе. для любой термодинамически равновесной системы число параметров состояния (v), к-рые можно изменять, сохраняя число существующих фаз (j) неизмененным, определяется выражением: v=k+n-j, где k — число компонентов системы, n — число параметров состояния системы, имеющих одно и то же значение во всех фазах (обычно темп-pa Т и давление р).