
- •С.В. Васильев, в.И. Недолугов основы измерений физических величин
- •Введение
- •Глава 1. Основы метрологии и измерительной техники
- •1.1. Измерение
- •1.1.1. Физическая величина
- •1.1.2. Виды средств измерений
- •1.1.3. Виды и методы измерений
- •1.2. Единство измерений
- •1.2.1. Единицы физических величин
- •1.2.2. Стандартизация
- •1.2.3. Эталоны
- •1.3. Точность измерений
- •1.3.1. Погрешность результата измерения
- •1.3.2. Погрешности средств измерений
- •1.3,3. Классы точности средств измерений
- •1.3.4. Основная и дополнительная погрешности
- •1.3.5. Методическая погрешность
- •1.3.6. Погрешность взаимодействия
- •1.3.7. Динамическая погрешность
- •1.3.8. Субъективная погрешность
- •1.4. Обработка результатов измерений
- •1.4.1. Обработка прямых измерений
- •1.4.2. Многократные прямые измерения
- •1.4.3. Обработка косвенных измерений
- •1.4.4. Расчет погрешности результата косвенного измерения
- •Глава 2. Аналоговые электроизмерительные приборы
- •2.1. Общие сведения
- •2.2. Электромеханические измерительные приборы
- •2.2.1. Приборы магнитоэлектрической системы
- •2.2.2. Приборы выпрямительной системы
- •2.2.3. Приборы термоэлектрической системы
- •2.2.4. Приборы электромагнитной системы
- •2.2.5. Приборы электродинамической системы
- •2.2.6. Электростатические вольтметры
- •2.2.7. Приборы индукционной системы
- •2.3. Электронные измерительные приборы
- •2.3.1. Электронные вольтметры переменного напряжения
- •2.3.2. Выпрямители (детекторы)
- •2.3.3. Особенности электронных измерительных приборов
- •2.4. Влияние формы сигнала на показания приборов
- •2.4.1. Сигнал без постоянной составляющей
- •2.4.2. Сигнал сумма переменной и постоянной составляющих
- •Глава 3. Электронно-лучевой осциллограф
- •3.1. Устройство электронно-лучевого осциллографа
- •3.1.1. Каналы вертикального и горизонтального отклонения
- •3.1.2. Электронно-лучевая трубка
- •3.1.3. Двухканальные электронно-лучевые осциллографы
- •3.2. Формирование изображений на экране электронно-лучевой трубки
- •3.2.1. Режим линейной развертки (режим y – t )
- •3.2.2. Режим y – X
- •3.2.3. Растровый режим (режим y – X – z)
- •3.3. Метрологий осциллографических измерений
- •3.3.1. Инструментальная погрешность
- •3.3.2. Погрешность взаимодействия
- •3.3.3. Субъективная погрешность
- •Глава 4. Аналоговые методы и средства регистрации
- •4.1. Общие сведения
- •4.2. Самопишущие приборы
- •1 Постоянным магнит; 2 ось; 3 катушка; 4 перо; 5 двигатель;
- •6 Бумага; 7 стрелка; 8 шкала
- •4.3. Светолучевые осциллографы
- •1 Источник света; 2 конденсор; 3 диафрагма; 4 зеркало; 5 постоянны
- •9 Зеркальный многогранник; 10 матовый экран
- •4.4. Измерительные магнитографы
- •4.5. Аналоговые запоминающие осциллографы
- •4.6. Сравнение возможностей аналоговых регистраторов
- •Глава 5. Цифровые измерительные приборы
- •5.1. Цифровые методы и средства измерений
- •5.1.1. Характеристики аналого-цифровых преобразователей
- •5.1.2. Методы аналого-цифрового преобразования
- •5.2. Цифровые частотомеры
- •5.2.1. Режим измерения частоты
- •5.2.2. Режим измерения периода
- •5.3. Цифровые вольтметры и мультиметры
- •5.3.1. Структура цифрового вольтметра
- •5.3.2. Структура цифрового мультиметра
- •5.4. Особенности выбора приборов
- •5.4.1. Выбор приборов по метрологическим характеристикам
- •5.4.2. Выбор диапазона измерения
- •Глава 6. Цифровая регистрация и анализ сигналов
- •6.1. Общие сведения
- •6.2. Цифровая измерительная регистрация
- •6.2.1. Устройство цифрового измерительного регистратора
- •6.2.2. Дискретизация, квантование и восстановление сигнала
- •6.2.3. Задание интервала регистрации
- •6.3. Цифровой анализ сигналов
- •6.3.1. Области анализа
- •6.3.2. Анализ во временной области
- •6.3.3. Анализ в частотной (спектральной) области
- •6.3.4. Вычисление параметров электропотребления
- •6.4. Характеристики типичных регистраторов/анализаторов
- •6.4.1. Регистраторы/анализаторы параметров электропотребления
- •6.4.2. Мини-логгеры
- •6.4.3. Компьютерные средства регистрации и анализа
- •Глава 7. Электрические измерения неэлектрических величин
- •7.1. Измерение температуры
- •7.1.1. Контактные методы и средства измерений
- •7.1.2. Бесконтактные методы и средства измерений
- •7.2. Измерение давления
- •7.2.1. Средства измерения давления
- •7.3. Измерение скорости движения потока вещества и его расхода
- •7.3.1. Основные понятия
- •7.3.2. Методы и средства измерения
- •Рекомендуемая литературы
- •Оглавление
- •Глава 1. Основы метрологии измерительной техники...…………………………………………………5
- •Глава 2. Аналоговые электроизмерительные приборы……………………………………...…………..35
- •Глава 3. Электронно-лучевой осциллограф……….70
- •Глава 4. Аналоговые методы и средства регистрации……………………………………….90
- •Глава 5. Цифровые измерительные приборы…………………103
- •Глава 6. Цифровая регистрация и анализ сигналов………………………………...…………..128
- •Глава 7. Электрические измерения неэлектрических величин…………………………………………..…..150
2.2.5. Приборы электродинамической системы
Конструкция и принцип действия. На рис. 19 приведена упрощенная конструкция электродинамического (ЭД) измерительного механизма. Неподвижная катушка 1 с током I1 разделена на две части; подвижная катушка 2 с током I2 закреплена на оси 3 внутри неподвижной катушки. Спиральная пружина 4 служит для создания противодействующего момента.
Принцип действия основан на взаимодействии магнитных потоков двух катушек с токами I1 и I2. Протекающие по катушкам токи создают магнитные потоки, которые стремятся принять одно направление, при этом подвижная катушка поворачивается внутри неподвижной. Вращающий момент М для постоянных токов:
М=
,
где L-1-2 – взаимная индуктивность катушек; α – угол поворота подвижной части.
Рис. 19. Конструкция электродинамического измерительного механизма:
1 – неподвижная катушка; 2 – подвижная катушка; 3 – ось; 4 – спиральная пружина;
5 – стрелка; 6 – шкала
Электродинамические приборы могут быть использованы в цепях как постоянного, так и переменного тока. Во втором случае при синусоидальных токах вращающий момент определяется по формуле
М=
,
где I1, I2 – действующие значения переменных токов в катушках;
φ – угол сдвига фаз между токами в катушках.
На базе ЭД механизма выпускаются амперметры, вольтметры, ваттметры, фазометры.
Амперметры и вольтметры. Схема с последовательным соединением катушек, приведенная на рис. 20, а, применяется в миллиамперметрах.
а б
Рис. 20. Схема амперметра электродинамической системы: а – с последовательным соединением катушек; б – с параллельным
Схема рис. (20, б) с параллельным соединением катушек используется в амперметрах на токи более 0,5 А.В схеме вольтметра использовано последовательное соединение катушек (рис.21).
Рис. 21. Схема вольтметра электродинамической системы
Резистор RV служит для повышения входного сопротивления прибора. Добавочные резисторы RД1 и RД2 обеспечивают возможность работы в нескольких диапазонах (значения номинальных входных напряжений UV3 > UV2 > UV1).
Здесь, как и в вольтметрах электромагнитной системы, индуктивное сопротивление катушек растет с ростом частоты измеряемого сигнала. Поэтому для поддержания полного комплексного сопротивления примерно постоянным в некотором диапазоне частот, как и в случае с ЭМ приборами, применяется частотная коррекция (конденсатор Ск и резистор Rк).
Ваттметры. На базе ЭД механизма выпускаются различные типы приборов, но основное применение этот принцип нашел в ваттметрах.
Произведение двух токов в выражении вращающего момента является основой для построения ваттметров на основе ЭД механизмов. Если в одной катушке ток равен току, текущему в нагрузку, а во второй катушке ток пропорционален напряжению на нагрузке, то показания прибора будут пропорциональны активной мощности. Схема включения ваттметра приведена на рис. 22.
Рис. 22. Схема ваттметра электродинамической системы
Цепь катушки напряжения содержит элементы частотной коррекции (конденсатор Ск и резистор Rк).
Особенности ЭД приборов. К достоинствам ЭД приборов относятся следующие: высокая точность (до 0,1 %); возможность работы как на постоянном, так и на переменном токе; амперметры и вольтметры этой системы реагируют на действующее значение переменного тока или напряжения. Недостатками являются:
сравнительно невысокая чувствительность;
возможное влияние внешних магнитных полей (что может потребовать экранирования механизма);
заметное влияние температуры окружающей среды на сопротивление катушек и, как следствие, на показания прибора;
значительная собственная мощность потребления энергии от источника сигнала;
нелинейная (квадратичная) шкала;
ограниченный частотный диапазон (1...5 кГц).
О
бозначение
ЭД системы на шкалах приборов:
Обозначение
ЭД системы с магнитным экранированием
механизма:
Существует разновидность конструкции, в которой магнитные потоки катушек замыкаются не по воздуху, как в классическом варианте, а по вспомогательным магнитопроводам. Это так называемая ферродинамическая (ФД) система. Благодаря заметному уменьшению магнитного сопротивления значительно возрастает вращающий момент механизма, поэтому может быть снижена мощность собственного потребления прибора и (или) повышена его чувствительность. Кроме того, наличие магнитопроводов ослабляет влияние внешних магнитных полей и поэтому не требуется экранирование механизма. Правда, точность ФД приборов ниже, а диапазон частот несколько уже, чем у ЭД.
О
бозначение
ФД системы на шкалах приборов:
Главное применение ЭД и ФД приборов – работа в электричес-ких цепях переменного тока промышленной частоты (50 Гц).