2 Обзор патентных источников на тему комбинированные парогазовые установки

По теме “Комбинированные парогазотурбинные установки” был произведен патентный поиск. Ниже приведены рефераты изобретений и патентов собранных в процессе патентного поиска.

Патент Россия 2107826. Парогазовая установка с испарителем деаэратора

Сущность изобретения: в 1 варианте изобретения деаэратор 16 гидравлически связан по входу греющего пара с испарителем деаэратора /ИД /11. Согласно отличительным особенностям 1 варианта изобретение ИД 11 размещен по ходу дымовых газов перед испарителем низкого давления (н.д.) 12, деаэратор 16 снабжен на выходе питательной воды гидравлической связью через регулирующий клапан /РК/ 19 с барабаном н.д. 6, а на выходе по пару - гидравлической связью через аварийно-перепускной клапан 20 с барабаном н.д. 6. Согласно отличительным особенностям 2 варианта изобретения, ИД 11 размещен по ходу дымовых газов перед испарителем н.д. 12, деаэратор 16 снабжен гидравлической связью по выходу питательной воды через РК 19 с барабаном н.д. 6, а также сепаратором 22, гидравлически связанным по входу пара с ИД 11 по выходу питательной воды - через РК 23 с деаэратором 16, по выходу пара - через РК 24 с деаэратором и через аварийно-перепускной клапан 25 - с барабаном н.д. 6. В дополнение к отличительным признакам 1 или 2 варианта, газовый подогреватель конденсата 13 снабжен промежуточным коллектором 20, гидравлически связанным через РК 21 с входом рециркуляционным насосом подогревателя 15.

Описание изобретения. В конденсационных ПГУ с высокотемпературными газовыми турбинами (ГТ) максимальный электрический КПД достигается в бинарном цикле, либо в цикле с небольшим дожиганием топлива за ГТ, с использованием КУ и паровых турбин двух и более давлений, причем для снижения концентрации кислорода и углекислого газа в питательной воде до требуемого уровня используют деаэраторы, в которых производится деаэрация конденсата с подогревом конденсата в процессе деаэрации до температуры насыщения на 10-40oC греющим паром, подаваемым в деаэратор из различных источников.

Рисунок 2.1 - Схемы конденсационного блока ПГУ двух давлений

Недостатки схемы: - сложность конструкции хвостовой части котла, из-за совмещения по газовому тракту хвостовых экономайзеров; - сложность конструкции ЦНД, имеющего два нерегулируемых отбора пара; - сложность системы регулирования дляобеспечения требуемых параметров теплоносителей на входе в деаэратор; - снижение экономичности работы ПГУ: на номинальной нагрузке – из-за расходования рабочего тела (пара) в деаэратор, на частичных нагрузках, из-за дросселирования части пара в линию подачи пара из ЦНД в деаэратор, в связи с чем пар поступает в деаэратор и в ЦНД через отбор пара на деаэратор.

Техническими результатами изобретения: - обеспечение максимума КПД без повышения площади поверхности теплообмена КУ и повышение экономичности работы блока ПГУ на частичных нагрузках; - упрощение конструкции.

На рисунке а и б (рисунок 2.1) приведены схемы конденсационного блока ПГУ двух давлений. Изображенная на фиг. 1 ПГУ содержит: ГТ 1 с ЭГ; двухцилиндровую ПТ 2 с ЭГ и конденсатором с конденсационным насосом 3; вертикальный КУ 4 двух давлений с барабанами в.д. и н.д. 5 и 6, содержащий последовательно размещенные по ходу газов в КУ пароперегреватель в.д. 7, испаритель в.д. 8, экономайзер в.д. 9, пароперегреватель н.д. 10, ИД 11, испаритель н.д. 12 и ГПК 13, выход которого по конденсату через РК 14 и РН ГПК 15 гидравлически связан с входом ГПК по конденсату; деаэратор 16 с подогревом деаэрируемого конденсата, гидравлически связанным по входу конденсата с выходом конденсата ГПК 13, по входу греющего пара - с ИД 11, по выходу питательной воды через РН 17 - с ИД 11 и через ПН 18 - с экономайзером в.д. 9.

Согласно отличительным особенностям изобретения по 1 варианту, ИД 11 размещен по ходу дымовых газов перед испарителем н.д. 12, деаэратором 16 снабжен на выходе питательной воды гидравлической связью через РК 19 с барабаном н. д. 6, а на выходе по пару - гидравлической связью через аварийно-перепускной клапан 20 с барабаном н.д. 6.

Изображенная на рисунке 2.1 б ПГУ содержит: ГТ 1 с электрогенератором; двухцилиндровую ПТ 2 с электрогенератором и конденсатором с конденсационным насосом 3; вертикальный КУ 4 двух давлений с барабанами в.д. и н.д. 5 и 6, содержащий последовательно размещенные по ходу газов в КУ пароперегреватель в.д. 7, испаритель в.д. 8, экономайзер в.д. 9, пароперегреватель н.д. 10, ИД 11, испаритель н.д. 12 и ГПК 13, выход которого по конденсату через РК 14 и РН ГПК 15 гидравлически связан с входом ГПК по конденсату; деаэратор 16 с подогревом деаэрируемого конденсата, гидравлически связанным по входу конденсата с выходом конденсата ГПК 13, по выходу питательной воды через РН 17 - с ИД 11 и через питательный насос 18 - с экономайзером в.д. 9.

Второй вариант изобретения отличается от 1-го конструктивным исполнением деаэратора. В первом варианте деаэратор выполнен с возможностью сброса избыточного греющего пара непосредственно из деаэратора через аварийно-перепускной клапан в барабан н.д. 6. Во втором варианте деаэратор снабжен сепаратором, и аварийный сброс греющего пара в барабан н.д. через аварийно-перепускной клапан осуществляется из сепаратора.

Патент Россия 2193096. Способ работы газотурбинной установки

Способ работы ГТУ включает изобарное сжигание топлива с воздухом, эжектирование газообразных продуктов сгорания водяным паром с получением парогазового рабочего тела, его расширение с совершением работы. Получение водяного пара производят из высоконапорной воды путем нагревания ее теплом расширившегося рабочего тела. Далее осуществляют отделение сконденсировавшейся воды из охлажденного рабочего тела, получение высоконапорной воды путем нагнетания отделенной воды, сброс продуктов сгорания. Выравнивают перед эжектированием температуры продуктов сгорания и водяного пара. Выбирают величины давлений продуктов сгорания и водяного пара, обеспечивающие при эжектировании звуковой или сверхзвуковой режим истечения водяного пара. Нагнетают отделенную воду с давлением, необходимым для получения водяного пара, температура которого равна температуре расширившегося рабочего тела.

Описание изобретения. Изобретение относится к газотурбинным установкам, которыми оснащаются электростанции, и может быть использовано в нефтяной и газовой промышленности в компрессорах для транспорта природного газа по трубопроводам, на насосных станциях для перекачки нефти и других объектах, где требуются мощные и компактные приводы.

Рисунок 2.2 - Схема газотурбинной установки

Недостатком способа является сжигание топлива в атмосфере водяного пара. Процесс горения топлива в таких условиях требует повышенного содержания воздуха, необходимого для горения, и отличается нестабильностью, которая увеличивается с повышением количества подаваемого пара. В результате чего, повышается расход энергии на сжатие воздуха и, как следствие, уменьшается полезная работа газотурбинной установки; получаемое парогазовое рабочее тело имеет пульсирующую температуру, что негативно сказывается на работе турбины, существенно снижая эффективность ее работы и всей установки в целом.

Поддержание высокой температуры рабочего тела после турбины приводит к понижению степени его расширения в турбине и, как следствие, к уменьшению производимой работы и падению эффективности (к.п.д.) установки в целом. Необходимость поддержания высокой температуры после турбины приводит также к повышению начальной температуры рабочего тела перед турбиной, что приводит к усиленному охлаждению ее рабочих поверхностей и корпуса, повышенному расходу топлива и уменьшению к.п.д. установки.

Технической задачей настоящего изобретения является повышение коэффициента полезного действия газотурбинной установки. Эффективное повышение давления парогазового рабочего тела позволяет увеличить производимую турбиной работу и тем самым повысить к.п.д. газотурбинной установки. Нагнетание отделенной от охлажденного расширенного рабочего тела воды с давлением, необходимым для получения водяного пара, температура которого равна температуре расширенного рабочего тела после турбины, позволяет создать максимально возможное давление водяного пара для процесса эжекции, и повысить давление парогазового рабочего тела до его расширения в турбине, и в конечном итоге повысить к.п.д. установки. Совокупность всех отличительных признаков позволяет повысить эффективный к.п.д. установки до величин порядка 0,41-0,45.

На рисунке 2.2 представлена схема газотурбинной установки (предлагаемый способ). Установка состоит из турбины 1, компрессора 2 для сжатия воздуха, генератора электрического тока 3, нагнетателя топлива 4, водяного насоса 5, рекуператора 6, сепаратора 7, камеры сгорания 8, теплообменника 9, эжектора 10.

Сжатое в нагнетателе 4 топливо и сжатый в компрессоре 2 воздух подают в КС 8. В компрессоре 2 для сжатия воздуха используют часть энергии, полученной в турбине 1. В КС 8 осуществляют изобарное сжигание топлива. В эжекторе 10 продукты сгорания эжектируют водяным паром с получением парогазового рабочего тела. В турбине 1 парогазовое рабочее тело расширяют с совершением удельной работы. Водяной пар производят из высоконапорной воды в рекуператоре 6 теплом расширившегося рабочего тела. Высоконапорную воду получают путем нагнетания насосом 5 воды, которую выделяют в сепараторе 7 из охладившегося в рекуператоре 6 расширенного рабочего тела. Выделенные сепаратором 7 продукты сгорания сбрасывают. Количество водяного пара, подаваемого в эжектор 10, поддерживают в пределах от 0,25 до 0,5 от массового расхода парогазового рабочего тела через турбину 1. Перед эжектированием в теплообменнике 9 выполняют теплообмен между продуктами сгорания и водяным паром с целью выравнивания величин их температур. Подачу продуктов сгорания и водяного пара в эжектор 10 производят с давлениями, величины которых обеспечивают сверхзвуковой режим истечения пара в эжекторе 10. Отделенную в сепараторе 7 от охлажденного расширившегося рабочего тела воду нагнетают насосом 5 с давлением, необходимым для получения в рекуператоре 6 водяного пара, температура которого равна температуре расширившегося рабочего тела после турбины 1.