
- •Министерство образования и науки рф Пермский государственный технический университет
- •Теория автоматического управления
- •Часть 2
- •Содержание
- •1. Пространство состояния
- •1.1. Схемы переменных состояний (спс)
- •1.1.1. Метод прямого программирования
- •1.1.2. Метод параллельного программирования
- •1.1.3. Метод последовательного программирования
- •1.2. Схемы переменных состояния типовых звеньев
- •1.3. Области применения методов программирования спс.
- •1.4. Матрица перехода
- •1.4.1. Аналитический способ получения матрицы перехода
- •1.4.2. Получение матрицы перехода разложением в ряд
- •1.4.3. Получение матрицы перехода по схеме переменных состояния
- •1.5. Передаточные матрицы сау.
- •2. Многомерные системы автоматического управления.
- •2.1. Управляемость и наблюдаемость систем автоматического управления.
- •2.1.1. Управляемость систем.
- •Критерий управляемости сау.
- •2.1.2. Наблюдаемость систем.
- •Критерий наблюдаемости сау.
- •2.2. Модальное управление.
- •2.2.1. Выбор желаемого характеристического уравнения.
- •2.2.1.1.Стандартная биномиальная форма характеристического полинома
- •2.2.1.2. Стандартная форма характеристического полинома, настроенная на фильтр Боттерворта
- •2.2.1.3. Стандартная форма характеристического полинома, настроенная на минимум квадратичной интегральной оценки.
- •3. Дискретные системы автоматического управления.
- •3.1. Импульсный элемент.
- •3.2. Математическое описание дискретных систем.
- •3.2.1. Разностные уравнения типа вход-выход.
- •3.2.2. Решетчатая функция.
- •3.2.2.1. Теоремы z-преобразований.
- •3.2.2.2. Особенности дискретного преобразования Лапласа.
- •3.3. Выбор шага квантования.
- •3.4. Дискретная передаточная функция.
- •3.4.1. Приближенные способы получения дискретной передаточной функции.
- •3.4.2. Передаточные функции различных видов соединений звеньев.
- •3.5. Фиксирующий элемент
- •3.6. Описание дискретных систем в пространстве состояния
- •Метод прямого программирования
- •Метод последовательного программирования
- •Метод параллельного программирования
- •3.6.1. Метод прямого программирования.
- •3.6.2. Параллельное программирование.
- •3.6.3 Метод последовательного программирования.
- •3.7. Описание дискретно-непрерывных систем методом пространства состояний.
- •3.7.1. Уравнение переходных состояний для дискретно-непрерывных систем.
- •3.8. Устойчивость импульсных систем
- •3.8.1. Алгебраический критерий Шур-Кона
- •3.8.2. Критерий Гурвица.
- •3.8.3. Критерий Михайлова.
- •3.8.4. Критерий Найквиста.
- •3.9. Оценка качества импульсных систем
- •3.10. Структура и характеристики цифровой системы управления.
- •3.11. Цифровой регулятор, оптимальный по быстродействию
- •3.13. Метод переменного коэффициента усиления.
- •4. Нелинейные системы
- •4.1. Особенности нелинейных систем:
- •4.2. Классификация нелинейных сау.
- •4.3. Типовые нелинейности
- •4.4. Структурные преобразования нелинейных систем.
- •4.4.1. Типовая структурная схема нелинейных систем.
- •4.5. Исследование нелинейных систем.
- •Исследование режима автоколебания.
- •4.5.1. Метод фазовых траекторий.
- •4.5.1.1. Применение метода фазовых траекторий для системы описанной в терминах пространства состояний.
- •4.5.1.2. Метод фазовых траекторий для линейных систем.
- •4.5.1.3. Особенности нелинейных систем:
- •4.5.2. Метод гармонической линеаризации.
- •4.5.2.1. Применение метода гармонической линеаризации для определения режима автоколебаний.
- •4.5.2.2. Критерий Гурвица для определения режима автоколебания.
- •4.5.2.3. Критерий Михайлова для определения режима автоколебания.
- •4.5.2.4. Критерий Найквиста.
- •4.6. Оценка абсолютной устойчивости нелинейных систем по критерию Попова.
- •4.7. Метод припасовывания.
- •4.8. Коррекция нелинейных систем
- •4.8.1. Компенсация статических нелинейных характеристик.
- •4.8.2. Построение корректирующих устройств по желаемой лачх.
- •4.8.2.1. Методика построения запретной области.
- •5. Анализ и синтез систем при случайных воздействиях,
- •5.1. Характеристики случайных сигналов
- •5.1.1 Основные статистические характеристики стационарного случайного процесса
- •5.1.1.1. Корреляционная функция
- •5.1.1.2. Спектральная плотность
- •5.2. Типовые случайные воздействия
- •Случайное воздействия типа «белый шум»;
- •Случайный ступенчатый сигнал;
- •Случайный сигнал, имеющий скрытую периодическую составляющую;
- •5.2.1. Случайное воздействия типа «белый шум»
- •5.2.2. Случайный ступенчатый сигнал
- •5.2.3. Случайный сигнал, имеющий скрытую периодическую составляющую
- •5.3. Преобразование случайного сигнала линейным звеном.
- •5.3.1. Преобразование сигнала во временной области
- •5.3.2. Преобразование сигнала в частотной области
- •5.4. Минимизация дисперсии сигнала ошибки замкнутой системы
- •6. Принципы построения оптимальных и адаптивных систем управления
- •6.1. Общая характеристика задач оптимального управления
- •Примеры задач оптимального управления
- •6.2. Системы, оптимальные по быстродействию
- •7. Идентификация систем,
- •7.1. Идентифицированность.
- •7.2. Линейный регрессионный анализ.
- •7.2.1. Явный регрессионный метод.
- •7.2.2. Итерационный регрессивный метод.
- •8. Адаптивные системы,.
- •8.1. Обобщенная схема адаптивной сау
- •8.2. Классификация адаптивных систем
- •8.3. Применение методов идентификации в адаптивных системах
- •8.4. Самонастраивающиеся адаптивные системы с автоматической оптимизацией критерия качества управления
- •8.4.2. Поисковые адаптивные сау
- •Метод Гаусса – Зейделя;
- •Градиентный метод;
- •8.4.2.1. Метод Гаусса – Зейделя
- •8.4.2.2. Градиентный метод
- •8.4.2.3. Метод наискорейшего спуска
- •8.4.3. Беспоисковые адаптивные сау
- •Литература
3.7.1. Уравнение переходных состояний для дискретно-непрерывных систем.
Рассмотрим
описание дискретно-непрерывной системы
в течение интервала времени
.
В
первый момент (момент замыкания ключей
)
система описывается с помощью матрицы
ключей
. (49)
В
момент между первым и вторым замыканием
ключей, т. е. на интервале времени
поведение системы описывается с помощью
матрицы перехода
(3.50)
или
(3.51)
Введем
матрицу
- дискретную матрицу перехода. Тогда
справедливо:
(3.52)
В
момент замыкания ключей
система описывается:
(3.53)
В
момент между вторым и третьим замыканием
ключей, т. е. на интервале времени
поведение системы описывается:
(3.54)
Нетрудно
заметить, что в момент времени
поведение системы будет писываться
следующим уравнением:
(3.55)
Данное уравнение называется уравнением переходных состояний и позволяет на основе известных матриц ключей и матрицы перехода в любой момент времени вычислить вектор состояния дискретно-непрерывной системы.
3.8. Устойчивость импульсных систем
Динамические свойства импульсных систем с амплитудной модуляцией во многом аналогичны динамическим свойствам непрерывных систем. Поэтому и методы анализа таких систем являются аналогами соответствующих методов исследования непрерывных систем.
Устойчивость
импульсных систем управления, как и
устойчивость непрерывной системы,
определяется характером ее свободного
движения. Импульсная система устойчива,
если свободная составляющая переходного
процесса
с течением времени затухает, т. е. если
(3.56)
Свободная
составляющая
является
решением однородного разностного
уравнения:
(3.57)
где
- характеристическое уравнение,
представляющее знаменатель дискретной
передаточной функции:
(3.58)
Решение уравнения (56) представляет собой сумму
, (3.59)
где
- постоянные интегрирования, зависящие
от начальных условий;
- корни характеристического уравнения
Из
выражения (59) видно, что при
решение
стремится к нулю лишь в том случае, если
все корни
по модулю меньше единицы, т. е. если
(3.60)
Отсюда можно сформулировать общее условие устойчивости: для устойчивости импульсной системы необходимо и достаточно, чтобы все корни характеристического уравнения системы находились внутри круга единичного радиуса с центром в начале координат (рис. 3.34.).
Рис. 3.34.
Если
хотя бы один корень
располагается на окружности единичного
радиуса, то система находится на границе
устойчивости. При
система неустойчива.
Таким
образом, единичная окружность в плоскости
корней zk
является
границей устойчивости,
следовательно,
играет такую же роль, как и мнимая ось
в плоскости корней
(рис. 3.35.)
Рис. 3.35.
Этот вывод вытекает также из основной подстановки метода z-преобразования:
Действительно,
пусть
,
тогда
(3.61)
и требование сводится к неравенству
(3.62)
откуда следует известное в теории непрерывных систем условие сходимости:
(3.63)
Аналогично непрерывным системам устойчивость импульсных систем может определена с помощью специальных правил - критериев.