
- •1. История развития поршневых двигателей и требования к ним.
- •2. Общее устройство и принцип работы поршневого двигателя внутреннего сгорания.
- •Основные понятия и определения.
- •4. Классификация двигателей.
- •5. Термодинамический процесс. Рабочее тело и параметры его состояния
- •6. Законы идеальных газов
- •7. Уравнение состояния идеальных газов
- •8. Первый закон термодинамики
- •9. Внутренняя энергия рабочего тела
- •10. Обратимые и необратимые термодинамические процессы
- •11. Изохорный процесс
- •12. Изобарный процесс
- •13. Изотермический процесс
- •14. Адиабатный процесс
- •15. Политропный процесс
- •16. Второй закон термодинамики, его физическая основа
- •17. Цикл теплового двигателя
- •18. Цикл Карно
- •19. Принцип работы двс
- •20. Цикл с подводом теплоты при постоянном объеме
5. Термодинамический процесс. Рабочее тело и параметры его состояния
Всякая тепловая машина приводится в действие вследствие происходящего в ней изменения состояния вещества, называемого рабочим телом или рабочим агентом.
Совокупность тел, находящихся в тепловом и механическом взаимодействии друг с другом и окружающей средой, называется термодинамической системой.
Рабочее тело определяет тип и назначение тепловой машины. Для расчета термодинамического анализа работы тепловой машины необходимо знать термодинамические свойства рабочего тела.
Наиболее эффективными рабочими телами для тепловых машин являются газы и пары, обладающие наибольшим коэффициентом объемного расширения.
В технической термодинамике в качестве рабочего тела принимается идеальный газ — условное газообразное вещество, силами взаимодействия, между молекулами которого пренебрегают.
В реальных же газах учитываются силы притяжения между молекулами, а молекулы имеют объем. Если реальные газы сильно разряжены, их свойства близки к свойствам идеального газа.
В качестве идеальных газов могут рассматривать такие газы, как азот, гелий, водород.
Для того чтобы определить конкретные физические условия, при которых рассматривается данное вещество и тем самым однозначно определить его состояние, вводятся параметры состояния вещества.
Параметрами состояния газа называются величины, характеризующие данное состояние газа.
К параметрам состояния газа относятся абсолютная температура, абсолютное давление, удельный объем, внутренняя энергия, энтропия, энтальпия и др. Абсолютная температура, абсолютное давление и удельный объем являются основными параметрами газообразного вещества.
Абсолютная температура
Температура газа служит мерой кинетической энергии поступательного движения молекул газа и характеризует степень его нагрева. Температуру газа измеряют приборами, основанными на тех или иных свойствах вещества, меняющихся с изменением температуры. Эти приборы имеют градуировку, т. е. температурную шкалу.
Абсолютное давление
Давление — физическая величина, характеризующая интенсивность сил, действующих по нормали к поверхности тела и отнесенных к единице площади этой поверхности.
Различают следующие виды давлений: барометрическое (атмосферное), нормальное, абсолютное, манометрическое (избыточное) и вакууметрическое (разряжения).
Барометрическое давление зависит от массы слоя воздуха. Самое большое барометрическое давление было зарегистрировано на уровне моря и составило 809 мм рт. ст., а самое низкое — 684 мм рт. ст. Барометрическое давление выражается высотой столба ртути в мм, приведенного к 0 °С.
Нормальное давление — это среднее значение давления воздуха за год на уровне моря, которое определяется ртутным барометром при температуре ртути 273 К. Оно равно примерно 101,3 кПа (750 мм рт. ст.).
Абсолютным давлением называется давление газов и жидкостей в закрытых объемах. Оно не зависит от состояния окружающей среды.
Манометрическим давлением называется разность между абсолютным давлением и барометрическим давлением, если первое больше второго.
Вакуумметрическим давлением называется разность между барометрическим давлением и абсолютным давлением, если последнее меньше первого.
Удельный объем
Удельный объем вещества — это величина, равная отношению его объема к его массе.