
- •51. Понятие электрических зарядов. Закон сохранения заряда
- •52. Закон Кулона.
- •53. Электрическое поле: напряженность.
- •54. Электрическое поле: потенциал.
- •56. Электрическая электроемкость, единицы электроемкости конденсатора
- •57. Проводники и диэлектрики в электрическом поле
- •58. Последовательное и параллельное соединение конденсаторов. Энергия заряженного конденсатора.
- •59. Понятие об электрическом токе. Сила тока.
- •60. Электрический ток в металлах. Закон Ома для участка цепи.
- •61. Сопротивление проводника и его зависимость от размеров, материалов и температуры.
- •62. Эдс источника тока. Закон Ома для полной цепи с эдс.
- •64. Тепловое действие тока. Закон Джоуля – Ленца.
- •65. Работа электрического тока и ее измерение.
- •66. Мощность электрического тока и ее измерение.
- •67. Электрический ток в электролитах. Законы Фарадея.
- •68. Электрический ток в газах.
- •69. Виды самостоятельного разряда в газах.
- •1. Электропечи для плавки металла;
- •2. Мощные источники света (прожекторы, проекционные киноаппараты);
- •3. Сварка и резка металлов.
- •70. Электрический ток в полупроводниках.
- •71. Электрический ток в вакууме. Плазма.
- •73. Взаимодействие токов. Сила Ампера.
- •74.Сила Лоренца. Магнитная индукция.
- •75. Индукция и напряженность магнитного поля.
- •76. Электромагнитная индукция. Самоиндукция и взаимоиндукция.
74.Сила Лоренца. Магнитная индукция.
Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B,
F = IBΔl sin α |
может быть выражена через силы, действующие на отдельные носители заряда.
Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение n q υ S, гдеυ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:
I = q n υ S. |
Выражение для силы Ампера можно записать в виде:
F = q n S Δl υB sin α. |
Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно n S Δl, то сила, действующая на одну заряженную частицу, равна
|
Эту
силу называют силой
Лоренца.
Угол α в этом выражении равен углу между
скоростью
и вектором
магнитной индукции
Направление
силы Лоренца, действующей на положительно
заряженную частицу, так же, как и
направление силы Ампера, может быть
найдено по правилу
левой руки или
по правилу
буравчика.
Магни́тная
инду́кция
— векторная величина,
являющаяся силовой характеристикой магнитного
поля (его
действия на заряженные частицы) в данной
точке пространства. Определяет, с
какой силой
магнитное
поле действует на заряд
,
движущийся со скоростью
.
Более
конкретно,
—
это такой вектор, что сила
Лоренца
,
действующая со стороны магнитного
поля[1] на
заряд
,
движущийся со скоростью
,
равна
Также магнитная индукция может быть определена как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.
Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.
магнитная индукция поля измеряется в теслах (Тл)
75. Индукция и напряженность магнитного поля.
Напряженность магнитного поля необходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах.Напряженность магнитного поля характеризует магнитное поле в вакууме.
Напряженность магнитного поля (формула) векторная физическая величина, равная:
Напряженность магнитного поля в СИ - ампер на метр (А/м).
Векторы индукции (В) и напряженности магнитного поля (Н) совпадают по направлению. Если знать Напряженность магнитного поля в данной точке, то можно определить индукцию поля в этой точке.
Если напряженность говорит о том, что могло бы делать магнитное поле,
то вторая характеристика — индукция — говорит о том, что оно делает
реально. Магнитная индукция (В) показывает реальную силу, с которой поле в данной точке действует на пробный магнит. Единица магнитной индукции — тесла (Т или Тл).
76. Электромагнитная индукция. Самоиндукция и взаимоиндукция.
Электромагнитная индукция (индукция значит наведение) это явление, при котором в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было обнаружено в 1831 г. М. Фарадеем. Ток, возникающий при электромагнитной индукции, называют индукционным. Магнитным потоком Φ через площадь S контура называют величину
|
где B –
модуль вектора
магнитной индукции,
α – угол между вектором
и
нормалью
к
плоскости контура
Фарадей
экспериментально установил, что при
изменении магнитного потока в проводящем
контуре возникает ЭДС индукции
инд,
равная скорости изменения магнитного
потока через поверхность, ограниченную
контуром, взятой со знаком минус:
|
Эта формула носит название закона Фарадея.
Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре.
Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:
|
Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностьюкатушки. Единица индуктивности в СИ называется генри (Гн).
Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, "натянутую" на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).
Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.
Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.