
- •Характеристики цимс
- •1.3.1 Принцип работы.
- •Параметры и характеристики оу
- •Вопрос 33 Структура оу
- •52 Эпитаксия
- •3 Термическое окисление
- •1 Термическое (вакуумное) напыление.
- •2 Катодное напыление.
- •3 Ионо-плазменное
- •1 Подложки гимс.
- •4 Катушки индуктивности
- •Вопрос№44Пленочные проводники и контактные площадки
3 Ионо-плазменное
Схема этого метода показана на рисунке 3.7в. Главная его особенность по сравнению с методом катодного напыления состоит в том, что в промежутке между электродом 8 - мишенью (с нанесенным на нее напыляемым материалом) и подложкой 4 действует независимый, «дежурный» газовый разряд. Для этого типа разряда характерны: наличие специального источника электронов в виде накаливаемого катода 6, низкие рабочие напряжения (десятки вольт) и большая плотность электронно-ионной плазмы. Подколпачное пространство, как и при катодном напылении, заполнено нейтральным газом, но при более низком давлении (10-3 - 10-4 мм рт. ст.).
Процесс напыления состоит в следующем. На мишень относительно плазмы подается отрицательный потенциал (2-3 кВ), достаточный для возникновения аномального тлеющего разряда и интенсивной бомбардировки мишени положительными ионами плазмы. Выбиваемые атомы мишени попадают на подложку и осаждаются на ней. Таким образом, принципиальных различий между процессами катодного и ионно-плазменного напыления нет. Различаются лишь конструкции установок: их называют соответственно двух- и трех - электродными.
Преимущества собственно ионно-плазменного метода по сравнению с катодным состоят в большей скорости напыления и большей гибкости процесса (возможность ионной очистки, возможность отключения рабочей цепи без прерывания разряда и др.). Кроме того, на качестве пленок сказывается более высокий вакуум.
Вопрос № 55. Планарно-эпитаксиальный биполярный транзистор
4.2.1 Этапы изготовления
На подложке р-типа формируется эпитаксиальный слой n-типа (рисунок 4.4а). Затем проводится термическое окисление (рисунок 4.4б), и методом фотолитографии формируются окна под разделительную диффузию, т.е. маска из слоя SiO2 остается на тех местах, где будут изготовляться биполярные транзисторы и другие элементы схемы (рисунок 4.4в).
Следующим этапом проводится разделительная диффузия акцепторной примесью (рисунок 4.4в) так, чтобы атомы примеси достигли подложки под эпитаксиальным слоем и в результате получается, что элементы схемы будут отделены друг от друга полупроводником р-типа.
Проводится второе термическое окисление, вторая фотолитография и вторая диффузия акцепторной примесью с тем, чтобы сформировать базовый слой транзистора (рисунок 4.4г). Эта диффузия требует меньшее время, так как глубина базового слоя 2,5-2,7 мкм меньше, чем при разделительной диффузии.
З
атем
проводятся ещё одно термическое
окисление, фотолитография, при которой
вскрываются окна под эмиттерную область
и вывод коллектора, и проводится последняя
диффузия донорной примесью (рисунок
4.4д). В этих областях создается максимальная
концентрация примеси. Глубина n+-
слоев составляет примерно 2 мкм.
Максимальная концентрация примеси в
месте вывода коллектора исключает
появление выпрямляющего контакта
металл-полупроводник (диод Шоттки).
После четвертого заключительного термического окисления и ещё одной фотолитографии вскрываются окна для межэлементных соединений металлической пленкой (рисунок 4.4е).
В результате термического напыления получается сплошная пленка алюминия (рисунок 4.4ж).
На заключительном этапе проводится последняя фотолитография, при которой из пленки Al формируются межэлементные соединения (рисунок 4.4з).
Таким образом, в процессе формирования транзистора использовались: пять фотолитографий, четыре термических окисления, три процесса диффузии, по одному процессу эпитаксии и термическому напылению алюминия не считая ряда вспомогательных операций: очистка, промывка, удаление фоторезиста и т.д.
Вопрос №56 Эквивалентная схема.
На
рисунке 4.7а представлена четырехслойная
структура биполярного транзистора
совместно с подложкой. Эту структуру
можно рассматривать как две трехслойных
структуры (рисунок 4.7б) представляющие
собой два транзистора: основной n-p-n
и паразитный p-n-p
(рисунок 4.7в).
Рисунок 4.7
Паразитный транзистор находится в режиме отсечки, когда основной работает в режимах отсечки или активном. Но когда основной транзистор работает в режиме насыщения, т.е. его коллекторный переход включен в прямом направлении, то паразитный транзистор находится в активном режиме, так как его эмиттерный переход – это коллекторный переход основного транзистора. В этом случае, через паразитный транзистор осуществляется связь между основными транзисторами, находящимися в режиме насыщения.
Резистор rК (рисунок 4.7в) учитывает распределенное сопротивление коллектора, так как коллекторный слой имеет наименьшую концентрацию примеси. Его величина составляет примерно 100 Ом. Этот резистор совместно с ёмкостями СКП и СКБ образуют RC цепочку, которая ухудшает быстродействие транзистора и ограничивает его предельную частоту. Кроме того, в ЦИМС это приводит к тому, что возрастает уровень логического нуля U0. Для исключения выше отмеченных явлений между коллектором и подложкой формируют скрытый слой n+.
В случае диэлектрической изоляции паразитный p-n-p транзистор отсутствует, но ёмкость СКП сохраняется. Она, как уже отмечалось, меньше, чем при изоляции p-n переходом примерно в три раза.
Вопрос №60 Диффузионные резисторы.
Для диффузионных резисторов чаще всего используется полоска базового р-слоя с двумя омическими контактами (рисунки 4.17а и б), расположенного в коллекторном n-слое. Для изоляции резисторов на n-слой подается максимальное положительное напряжение.
Рисунок 4.17
Для
такой полосковой конфигурации
сопротивление резистора записывается
в виде
, (4. 1)
где - удельное сопротивление полупроводника, l, b, d – длина, ширина и глубина резистивного слоя (рисунок 4.17а и б). Поскольку удельное сопротивление и глубина р-слоя у всех резисторов одинаковы, то обозначим RS =/d и назовем это - удельное сопротивление слоя. Отношение l/b называется коэффициент формы резистора КФ. Тогда
R=RSКФ. (4.2)
И длина, и ширина резистора ограничены. Длина l не может превышать размеров кристалла, т. е. лежит в пределах 1-5 мм. Ширина b ограничена возможностями фотолитографии, боковой диффузией, а также допустимым разбросом (10—20%). Практически минимальная ширина составляет 10-15 мкм.
Подставляя в (4.2) значения RS=200 Ом/ и l/b =50, получаем максимальное значение сопротивления RМАКС=10 KOм. Это значение можно повысить в 2-3 раза, используя не полосковую, а зигзагообразную конфигурацию резистора (рисунок 4.17в).
Количество «петель» в конечном счете, ограничено площадью, отводимой под резистор. Обычно n 3, в противном случае площадь резистора может достигать 15-20% площади всего кристалла. Максимальное сопротивление при n= 3 не превышает 20-30 кОм.
Температурный коэффициент резистора, выполненного на основе базового слоя, составляет 0,15- 0,30%/0С, в зависимости от значения RS
Если необходимые номиналы сопротивлений превышают20-30 кОм, можно использовать так называемые пинч-резисторы. Структура пинч-резистора показана на рисунке 4.17г. По сравнению с простейшим резистором пинч-резистор имеет меньшую площадь сечения и большее удельное сопротивление (так как используется донная, т. е. слабо легированная часть базового р-слоя). Поэтому у пинч-резисторов удельное сопротивление слоя RS обычно составляет 2-5 кОм/ и более, в зависимости от толщины. При таком значении RS максимальное сопротивление может достигать значений 200-300 кОм даже при простейшей полосковой конфигурации.
Недостатками пинч-резисторов являются: больший разброс номиналов (до 50%) из-за сильного влияния изменения толщины р-слоя, больший температурный коэффициент сопротивления (0,3- 0,5%/°С) из-за меньшей степени леги -рования донной части р-слоя, нелинейность вольтамперной характеристики при напряжениях более 1-1,5 В.
Если необходимые номиналы сопротивлений составляют 100 Ом и менее, то использование базового слоя нецелесообразно, так как ширина резистора должна быть меньше его длины, что конструктивно трудно осуществить. Для получения резисторов с малыми номиналами сопротивлений используют низкоомный эмиттерный слой. При значениях RS= 5-15 Ом/, свойственных этому слою, удается получить минимальные сопротивления 3-5 Ом с температурным коэффициентом 0,01- 0,02%/°С.
Вопрос № 61 конденсаторы ПП ИМС
В биполярных полупроводниковых ИМС роль конденсаторов играют обратно смещенные р-n переходы. У таких конденсаторов хотя бы один из слоев является диффузионным, поэтому их называют диффузионными конденсаторами.
Типичная структура диффузионного конденсатора, в котором используется переход коллектор - база, показана на рисунке 4.18а. Емкость такого конденсатора в общем случае имеет вид:
С = C0S, (4.3), где С0- удельная емкость р-n перехода, S-площадь конденсатора. Оптимальной, конфигурацией является форма близкая к квадрату.
Например, если C0= 150 пФ/мм2 и С =100 пФ, то S 0,8 мм. Как видим, размеры конденсатора получились сравнимыми с размерами кристалла.
Используя не коллекторный, а эмиттерный р-n переход, можно обеспечить в 5-7 раз большие значения максимальной емкости. Это объясняется большей удельной емкостью эмиттерного перехода, поскольку он образован слоями с более высокой концентрацией, а, следовательно, меньшей толщиной р-n перехода. Возможно совместное использование эмиттерного и коллекторного переходов.
О
сновное
преимущество при использовании
эмиттерного перехода - большие значения
максимальной емкости. По пробивному
напряжению этот вариант уступает
варианту с использованием коллекторного
перехода.
Эквивалентная схема конденсатора приведена на рисунке 4.18б.
Необходимым условием для нормальной работы конденсатора является обратное смещение р-n перехода. Следовательно, напряжение на конденсаторе должно иметь строго определенную полярность. Кроме того, емкость зависит от напряжения. Это значит, что конденсатор является нелинейным с вольт-фарадной характеристикой, как у варикапа. Однако чаще требуются линейные конденсаторы с постоянной емкостью, которые способны пропускать без искажения переменные сигналы и «блокировать» (т. е. не пропускать) постоянные составляющие сигналов, они успешно выполняет такую функцию при наличии постоянного смещения Е, превышающего амплитуду переменного сигнала.
С другой стороны, является возможность менять значение емкости, меняя смещение Е. Следовательно, конденсатор можно использовать не только в качестве «обычного» конденсатора с постоянной емкостью, но и в качестве конденсатора с электрически управляемой емкостью или, как говорят, конденсатора переменной емкости. Однако диапазон электрической регулировки ограничен: меняя смещение Е от 1 до 10 В можно изменить емкость конденсатора всего в 2-2,5 раза.
Из-за высокого сопротивления коллекторного n-слоя добротность таких конденсаторов низкая.
Вопрос №62 Оксидные МДП-конденсаторы.
Интегральным конденсатором, принципиально отличным от диффузионного, является МОП-конденсатор. Его типичная структура показана на рисунке 4.18в.
З
десь
над эмиттерным n+-
слоем с помощью дополнительных
технологических процессов выращен
слой тонкого (0,08-0,12 мкм) окисла. В
дальнейшем, при осуществлении металлической
разводки, на этот слой напыляется
алюминиевая верхняя обкладка конденсатора.
Нижней обкладкой служит эмиттерный n+
-
слой.
Добротность выше, так как сопротивление r значительно ниже из-за n+-слоя.
Важным преимуществом МОП-конденсаторов по сравнению с диффузионным является то, что они работают при любой полярности напряжения, т. е. аналогичны «обычному» конденсатору. Однако МОП-конденсатор, как и диффузионный, тоже нелинейный. Паразитная емкость МОП-конденсаторов учитывается с помощью уже известной эквивалентной схемы (рисунок 4.18г), где под емкостью СП следует понимать емкость между n-карманом и р-подложкой.
В заключение заметим, что в МОП-транзисторных ИМС, в отличие от биполярных, изготовление МОП-конденсаторов не связано с дополнительными технологическими процессами: тонкий окисел для конденсаторов получается на том же этапе, что и тонкий окисел под затвором, а низкоомный полупроводниковый слой - на этапе легирования истока и стока. Изолирующие карманы в МОП-технологии, как известно, отсутствуют.
Вопрос №41. ГИБРИДНЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ
Гибридными интегральными микросхемами (ГИМС) называют микросхемы, в которых пассивные элементы (резисторы, конденсаторы, индуктивности) выполнены в виде пленок на диэлектрической подложке, а полупроводниковые электронные приборы (диоды, транзисторы, диодные и транзисторные матрицы, ППИМС) – навесные.
Ф
рагмент
ГИМС приведен на рисунке 5.1.
Микросхемы с толщиной пленок менее 1 мкм называют тонкопленочными, а с толщиной более 1 мкм - толстопленочными ГИМС. Напыление тонких пленок осуществляется методами, описанными в разделе 3.6, а получение толстых пленок в 5.
Конфигурации тонко- и толстопленочных элементов одинаковы, но их конкретные геометрические размеры (при заданных электрических параметрах) могут существенно различаться в связи с использованием совершенно разных материалов. Пленочные элементы нет необходимости изолировать друг от друга, так как все они выполняются на диэлектрической подложке. Поскольку расстояния между элементами сравнительно большие, паразитные емкости практически отсутствуют и их учет на эквивалентных схемах обычно не имеет смысла.
Вопрос №41 основные элементы ГИМС