
- •1. Понятие, определение понятий. Виды определений, требования к определению понятий.
- •3. Пересечение множеств, свойства пересечения, дистрибутивность пересечения относительно объединения (с доказательством).
- •4. Разность множеств. Дополнение к подмножеству. Дополнение к объединению и пересечению множеств (с доказательством).
- •5. Декартово произведение множеств, способы задания. Свойства декартова произведения (с доказательством). Число элементов декартова произведения конечных множеств. Понятие кортежа.
- •6. Бинарные соответствия между элементами множеств, способы задания. Отображение, как частный случай соответствий. Виды отображений. Взаимнооднозначные отображения. Равномощные множества.
- •7. Отношение, как частный случай соответствия. Свойства отношений, особенности графов.
- •8. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы. Отношение порядка. Строгий и нестрогий порядок. Линейный и частный порядок. Упорядоченные множества.
- •9. Понятие высказывания. Конъюнкция, дизъюнкция высказываний, свойства этих операций.
- •10. Отрицание высказываний. Законы двойного отрицания, противоречия, исключения третьего Законы де Моргана.
- •11. Импликация высказываний. Обратная, противоположная и обратная противоположной импликации. Эквиваленция высказываний.
- •12. Понятие предиката. Область определения и множество истинности предиката. Операции над предикатами, множества истинности конъюнкции, дизъюнкции, импликации предикатов.
- •13. Понятие функции. Способы задания, свойства функций (монотонность, четность, нечетность, периодичность). График функции.
- •14. Прямая и обратная пропорциональности.
- •15. Числовое выражение, значение числового выражения. Числовые равенства и неравенства, их свойства (с доказательством).
- •16. Выражение с переменной. Уравнение с одной переменной. Теоремы о равносильности уравнений (с доказательством).
- •17. Неравенства с одной переменной. Теоремы о равносильности неравенств (с доказательством).
- •Позиционные системы счисления.
- •19. Теоретико-множественный смысл суммы целых неотрицательных чисел. Законы сложения (с доказательством).
- •21. Теоретико-множественный смысл произведения целых неотрицательных чисел, законы умножения (с доказательством). Определение произведения через сумму.
- •22. Теоретико-множественный смысл частного целого неотрицательного числа и натурального. Определение частного через произведение. Правила деления суммы и произведения на число (с доказательством).
- •23. Понятие отношения делимости целых неотрицательных чисел. Теоремы о делимости суммы, разности и произведения целых неотрицательных чисел (с доказательством).
- •24. Понятие признака делимости. Признаки делимости на 2 и 5, 4 и 25 (с доказательством).
- •25. Понятие обыкновенной дроби. Основное свойство обыкновенных дробей, его использование. Положительные рациональные числа, действия над ними. Свойства сложения и умножения (с доказательством).
- •26. Понятие длины отрезка и ее измерение. Свойства длин отрезков. Стандартные единицы длины.
- •Лемма. Прямая de, параллельная какой-нибудь стороне ac треугольника abc, отсекает от него треугольник dbe, подобный данному.
- •28. Смысл натурального числа и действий над натуральными числами, полученных в результате измерения величин (на примере длин отрезков).
14. Прямая и обратная пропорциональности.
Две взаимно зависимые величины называются пропорциональными, если отношение их величин остается неизменным. С увеличением (уменьшением) одной величины в несколько раз другая величина увеличивается (уменьшается) во столько же раз.
Определение. Частное величин, составляющих пропорцию, называетсякоэффициентом пропорциональности. Коэффициент пропорциональности обозначается маленькой латинской буквой k.
Например:
1 : 10 = 0,5 : 5
10 : 100 = 5 : 50
0,1 : 1 = 0,05 : 0,5
Коэффициент пропорциональности во всех пропорциях k = 0,1.
Правило. Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) увеличивает (уменьшает) и другую величину, то такие величины прямо пропорциональны.
Схематически прямую пропорциональность можно записать гак: «больше – больше» или «меньше – меньше». Примерами прямой пропорциональности служит зависимость скорости от пройденного пути, стоимости от веса товара.
Правило. Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) уменьшает (увеличивает) и другую величину, то такие величины обратно пропорциональны.
Схематически обратную пропорциональность можно записать так: «больше – меньше» или «меньше – больше». Пример обратной пропорциональности: грузоподъемность одной машины и количество машин при перевозке одинакового объема груза.
15. Числовое выражение, значение числового выражения. Числовые равенства и неравенства, их свойства (с доказательством).
Числовым выражением называют всякую запись из чисел, знаков арифметических действий и скобок, составленную со смыслом.
Алгебраическим выражением (буквенным выражением) называется запись, составленная из букв и знаков арифметических действий, также в нее могут входить числа и скобки. Как и числовое выражение алгебраическое должно быть составлено со смыслом.
В буквенном выражении (520 - x : 5) , буква x, вместо которой можно подставить различные числа, называется переменной. Таким образом, переменная - это буква, входящая в алгебраическое выражение, которая может принимать различные значения. Если вычислить значение алгебраического выражения, заменив переменные какими-либо числами, мы получим значение выражения при данном значении переменных.
Множество значений, которые может принимать переменная, не лишая выражения смысла называется областью определения этого выражения. Рассмотрим область определения для выражений:
x – 11 - x может принимать любые значения
11 : x - любые значения за исключением нуля (x ≠ 0)
(x + 5) : (x – 2) - любые значения за исключением двух (x ≠ 2)
16. Выражение с переменной. Уравнение с одной переменной. Теоремы о равносильности уравнений (с доказательством).
Пусть f(x) и g(x) – два выражения с переменной х и областью определения Х.
Тогда высказывательная форма вида f(x) = g(x)называется уравнением с одной переменной.
Значение переменной х из множества Х, при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение – это значит найти множество его корней.
Множество значений переменной, при которых выражения f(x) и g(x) имеют смысл, называется областью определения уравнения f(x) = g(x).
Множество решений уравнения является подмножеством области его определения.
Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называются равносильными.
Замена уравнения равносильным ему уравнением называется преобразованием.
Преобразования, позволяющие получать равносильные уравнения, могут быть следующими:
1. Если к обеим частям уравнения f(x) = g(x), определенного на множестве Х, прибавить одно и то же выражение h(x), имеющее смысл на множестве Х, то получится уравнение f(x) + h(x) = g(x) + h(x), равносильное данному.
Из данного утверждения вытекают следствия, которые используются при решении уравнений:
1) Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.
2) Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.
2. Если обе части уравнения f(x) = g(x), определенного на множестве Х, умножить на одно и то же выражение h(x), имеющее смысл на множестве Х и не обращающееся на нем в нуль, то получится уравнение f(x)× h(x) = g(x)× h(x), равносильное данному.
Из этого утверждения вытекает следствие:
Если обе части уравнения умножить на одно и то же число, отличное от нуля, то получится уравнение, равносильное данному.