
- •1. Понятие, определение понятий. Виды определений, требования к определению понятий.
- •3. Пересечение множеств, свойства пересечения, дистрибутивность пересечения относительно объединения (с доказательством).
- •4. Разность множеств. Дополнение к подмножеству. Дополнение к объединению и пересечению множеств (с доказательством).
- •5. Декартово произведение множеств, способы задания. Свойства декартова произведения (с доказательством). Число элементов декартова произведения конечных множеств. Понятие кортежа.
- •6. Бинарные соответствия между элементами множеств, способы задания. Отображение, как частный случай соответствий. Виды отображений. Взаимнооднозначные отображения. Равномощные множества.
- •7. Отношение, как частный случай соответствия. Свойства отношений, особенности графов.
- •8. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы. Отношение порядка. Строгий и нестрогий порядок. Линейный и частный порядок. Упорядоченные множества.
- •9. Понятие высказывания. Конъюнкция, дизъюнкция высказываний, свойства этих операций.
- •10. Отрицание высказываний. Законы двойного отрицания, противоречия, исключения третьего Законы де Моргана.
- •11. Импликация высказываний. Обратная, противоположная и обратная противоположной импликации. Эквиваленция высказываний.
- •12. Понятие предиката. Область определения и множество истинности предиката. Операции над предикатами, множества истинности конъюнкции, дизъюнкции, импликации предикатов.
- •13. Понятие функции. Способы задания, свойства функций (монотонность, четность, нечетность, периодичность). График функции.
- •14. Прямая и обратная пропорциональности.
- •15. Числовое выражение, значение числового выражения. Числовые равенства и неравенства, их свойства (с доказательством).
- •16. Выражение с переменной. Уравнение с одной переменной. Теоремы о равносильности уравнений (с доказательством).
- •17. Неравенства с одной переменной. Теоремы о равносильности неравенств (с доказательством).
- •Позиционные системы счисления.
- •19. Теоретико-множественный смысл суммы целых неотрицательных чисел. Законы сложения (с доказательством).
- •21. Теоретико-множественный смысл произведения целых неотрицательных чисел, законы умножения (с доказательством). Определение произведения через сумму.
- •22. Теоретико-множественный смысл частного целого неотрицательного числа и натурального. Определение частного через произведение. Правила деления суммы и произведения на число (с доказательством).
- •23. Понятие отношения делимости целых неотрицательных чисел. Теоремы о делимости суммы, разности и произведения целых неотрицательных чисел (с доказательством).
- •24. Понятие признака делимости. Признаки делимости на 2 и 5, 4 и 25 (с доказательством).
- •25. Понятие обыкновенной дроби. Основное свойство обыкновенных дробей, его использование. Положительные рациональные числа, действия над ними. Свойства сложения и умножения (с доказательством).
- •26. Понятие длины отрезка и ее измерение. Свойства длин отрезков. Стандартные единицы длины.
- •Лемма. Прямая de, параллельная какой-нибудь стороне ac треугольника abc, отсекает от него треугольник dbe, подобный данному.
- •28. Смысл натурального числа и действий над натуральными числами, полученных в результате измерения величин (на примере длин отрезков).
7. Отношение, как частный случай соответствия. Свойства отношений, особенности графов.
Существует много типов бинарных отношений с разными свойствами. Самым общим из этих типов является граф. Это произвольное бинарное отношение, но его особенностью является непривычная терминология - элементы множества, из которого формируются пары, называются вершинами, а сами пары в зависимости от их свойств носят названия ребра или дуги. Графы обычно изображаются не в виде таблицы с двумя колонками (каждая строка такой таблицы представляет пару элементов - вершин), а в виде схемы.
Рассмотрим пример. Пусть задано множество вершин
V = {a, b, c, d, e},
из которого сформировано некоторое множество пар
E = { (a, b), (a, c), (b, d), (c, a), (c, e) }.
Множество пар E, сформированное из множества V вершин, является примером бинарного отношения. Преобразуем это бинарное отношение в схему. Для этого изобразим на листе бумаги все его вершины произвольным образом и соединим эти вершины линиями со стрелками так, чтобы каждая стрелка выходила из первого элемента пары и входила во второй элемент пары (см. рисунок 1). При этом, если окажется, что некоторая пара вершин соединяется стрелкой в одну и в другую сторону, то мы вместо линий со стрелками нарисуем линию без стрелок (для нашего примера это пары (a, c) и (c, a)). С учетом этого дугами в графе являются соединительные линии со стрелками в одну сторону, а ребрами - соединения без стрелок или со стрелками, направленными в обе стороны. Можно считать, что каждое ребро содержат пару разнонаправленных дуг.
Рис. 1.
Каждая дуга графа представлена начальной и конечной вершинами. Граф, у которого все связи представлены только ребрами, называется неориентированным графом (или просто графом). Граф, у которого отсутствуют ребра (т.е. все связи имеют только одно направление), называется ориентированным графом, а граф, у которого имеются и ребра, и дуги - смешанным.
Если задан граф G, то выражение G (x), где x - произвольная вершина графа, используется для обозначения множества смежных с ней вершин, т.е. вершин, в которые направлена дуга из x. Например, для графа G на рисунке 8 справедливы следующие равенства:
G (a) = {b, c}; G (b) = {d}; G (c) = {a, e}; G (d) = G (e) = .
Если мы, используя изображение произвольного графа, будем двигаться от вершины к вершине в соответствии с направлением дуг (при этом по ребру можно передвигаться в любую сторону), то последовательность вершин, отмечаемых по мере такого "обхода", называется путем в данном графе. Например для графа G на рисунке 8 существуют следующие пути: (a, b, d); (c, e); (a, c, a, b) и т.д. Пути можно записывать, используя стрелки, например, abd. При этом возможны графы, у которых имеются самопересекающиеся пути, т.е. некоторые вершины и дуги могут в некоторых путях повторяться.
Циклом в графе называется такой путь, когда его начальная и конечная вершина совпадают.
8. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы. Отношение порядка. Строгий и нестрогий порядок. Линейный и частный порядок. Упорядоченные множества.
Эквивалентность – это равнозначность (или равноценность) в каком-нибудь отношении.
Отношение
на множестве
называется эквивалентностью
(или отношением
эквивалентности),
если существует разбиение
множества
такое, что соотношение
выполняется тогда и только тогда, когда
и
принадлежат некоторому общему классу
данного разбиения.
Пусть – разбиение множества . Определим, исходя из этого разбиения, отношение на : , если и принадлежат некоторому общему классу данного разбиения. Очевидно, отношение является эквивалентностью. Назовем отношением эквивалентности, соответствующим исходному разбиению.
Например,
разбиение состоит из подмножеств
множества
,
содержащих ровно по одному элементу.
Соответствующее отношение эквивалентности
есть отношение равенства
.
Наконец, если разбиение множества
состоит из одного подмножества,
совпадающего с самим
,
то соответствующее отношение
эквивалентности есть полное отношение:
любые два элемента являются эквивалентными.
Пустое отношение (на непустом множестве!) не является эквивалентностью.
Мы подошли к эквивалентности через понятие взаимозаменимости. Но что значит, что два объекта и взанмозамепимы в данной ситуации? Это всегда можно понимать так, что каждый из них содержит всю информацию о другом объекте, небезразличную в данной ситуации. Это утверждение означает только то, что взаимозаменимость объектов есть совпадение признаков, существенных в данной ситуации.
Например, пусть считаем одинаковыми автомобили, выпущенные в одной и той же серии одним и тем же заводом. Тогда, разобрав один экземпляр «Волги», в принципе можем составить комплект рабочих чертежей, который годится для выпуска однотипных «Волг». Однако, изучив один экземпляр «Волги», не можем угадать окраску кузова или характер вмятин на бампере у других односерийных экземпляров.
Когда мы выбираем из комплекта одну шахматную фигуру, то мы знаем, куда ее можно поставить в начальной позиции и как ходят, все взаимозаменяемые с ней, т.е. одноименные и одноцветные, фигуры.
Пусть
теперь задано разбиение
множества
.
Выберем в каждом множестве
некоторый содержащийся в нем элемент
.
Этот элемент мы будем называть эталоном
для всякого элемента
,
входящего в то же множество
.
Мы будем – по определению – полагать
выполненным соотношение
.
Так определенное отношение
назовем отношением «быть
эталоном»..
Легко
видеть, что эквивалентность
,
соответствующая исходному разбиению,
может быть определена так:
,
если
и
имеют общий эталон:
и
.
Ясно, что любое отношение эквивалентности может быть таким образом определено с помощью отношения «быть эталоном» и, наоборот, любое отношение «быть эталоном» определяет некоторую эквивалентность.
Пусть
– отношение эквивалентности, а
– такое отношение «быть эталоном», что
выполнено в том и только том случае,
когда
и
имеют общий эталон
.
Иначе
говоря,
равносильно существованию такого
,
что
и
.
Поскольку
,
это означает, что
.
Иначе говоря, эквивалентность можно
алгебраически выразить через более
простое отношение «быть эталоном».
Отношение
на множестве из
элементов можно задать графом, имеющим
ровно
стрелок, где
– число классов эквивалентности: каждый
элемент соединяется со своим единственным
эталоном. Граф, изображающий отношение
эквивалентности, состоит из
полных подграфов, содержащих по
,
вершин
.
Таким образом, общее число ребер в этом
графе равно
.
Рассмотрим
в качестве
множество всех целых неотрицательных
чисел и возьмем его разбиение на множество
четных чисел и множество
нечетных чисел. Соответствующее отношение
эквивалентности на множестве целых
чисел обозначается так:
и читается:
сравнимо с
по модулю 2. В качестве эталонов здесь
естественно выбрать 0 – для четных чисел
и 1 – для нечетных чисел. Аналогично,
разбивая то же множество
на
подмножеств
,
где
состоит из всех чисел, дающих при делении
на
и остатке
,
мы придем к отношению эквивалентности:
,
которое выполняется, если
и
имеют одинаковый остаток при делении
на
.
В качестве эталона в каждом
естественно выбрать соответствующий
остаток
.