Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
35405_Metematika_Ekzamen_PED_KOLLEDZh.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
690.18 Кб
Скачать

5. Декартово произведение множеств, способы задания. Свойства декартова произведения (с доказательством). Число элементов декартова произведения конечных множеств. Понятие кортежа.

Декартовым произведением множеств А и В называется множество пар, первая компонента которых принадлежит множеству А, вторая множеству В. Обозначают А В. Таким образом  А В = {(x;y) | x A, y B}.

Операцию нахождения декартового произведения множеств А и В называют декартовым умножением этих множеств.

Рассмотрим следующий пример. Известно, что А В={(2, 3), (2, 5),    (2, 6), (3, 3), (3, 5), (3, 6)}. Установим, из каких элементов состоят множества А и В. Так как первая компонента пары декартового произведения принадлежит множеству  А, а вторая – множеству В, то данные множества имеют следующий вид:  А={2, 3}, B={3, 5, 6}.

Перечислим элементы, принадлежащие множеству А В, если  А={a, b, c, d},   B=A. Декартово произведение А В={(a, a), (a, b), (a, c),  (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, b), (c, c), (c, d), (d, a), (d, b) ,(d, c), (d, d)}.

Количество пар в декартовом прoизведении А В будет равно произведению числа элементов множества А и числа элементов множества В:   n(А В)=n(A) n(B).

В математике рассматривают не только упорядоченные пары, но и наборы из трех, четырех и т.д. элементов. Такие упорядоченные наборы называют кортежами. Так, набор (1, 5, 6) есть кортеж длины 3, так как в нем три элемента.

Используя понятие кортежа, можно определить понятие декартового произведения n множеств.

Декартовым произведением множеств называют множество кортежей длины n, образованных так, что первая компонента принадлежит множеству А, вторая – А, …, n-ая – множеству А.

Пусть даны множества А ={2, 3}; А ={3, 4, 5}; A ={7, 8}. Декартово произведение А А А ={ (2, 3, 7), (2, 3, 8), (2, 4, 7), (2, 4, 8), (2, 5, 7),  (2, 5, 8),(3, 3, 7), (3, 4, 7), (3, 3, 8), (3, 4, 8), (3, 5, 7), (3, 5, 8)}.

6. Бинарные соответствия между элементами множеств, способы задания. Отображение, как частный случай соответствий. Виды отображений. Взаимнооднозначные отображения. Равномощные множества.

Бинарные отношения служат простым и удобным аппаратом для весьма широкого круга задач. Язык бинарных и n-арных отношений используется во многих прикладных (для математики) областях, например, таких как математическая лингвистика, математическая биология, математическая теория баз данных. Широкое использование языка бинарных отношений легко объясняется - геометрический аспект теории бинарных отношений есть попросту теория графов.

Введем необходимые определения.

Определение 1.1. Декартовым произведением  множеств  X и Y называется множество XxY всех упорядоченных пар (x, y) таких, что x X, yY.

Определение 1.2. Соответствием между множествами X и Y (или соответствием из X в Y) называется любое подмножество декартова произведения XxY. Если множества X и Y совпадают, то соответствие между множествами X и Y называют также бинарным отношением на множестве X.

Отображения делятся на два вида: отображения «в» и «на».

Пусть задано отображение B=f (A)

1. Отображение «в» – инъекция Соответствие, при котором каждому элементу множества A соответствует единственный элемент множества B, а каждому элементу множества  B соответствует не более одного прообраза из A. При этом, мощность множества A меньше мощности множества B.

2. Отображение «на» – сюръекция. Соответствие, при котором каждому элементу множества A соответствует единственный элемент множества B, а каждому элементу множества  B соответствует хотя бы  один прообраз из A. При этом, мощность множества A больше или равна мощности множества B.

Особое место занимают взаимнооднозначные отображения (соответствия).

Взаимнооднозначное отображение (соответствие) – биекция. Соответствие, при котором каждому элементу множества A соответствует единственный элемент множества B и  каждому элементу множества  B соответствует один прообраз из множества A. При этом мощность множества A равна мощности множества B.

Множества будут равномощными (равносильными, эквивалентными), если между ними  можно установить (задать) взаимнооднозначное соответствие.

Для взаимнооднозначных отображений, обратное отображение также является взаимнооднозначным отображением.

Множества называются  равномощными, эквивалентными, если между ними есть взаимно – однозначное или одно-однозначное соответствие, то есть такое попарное соответствие, когда каждому элементу одного множества сопоставляется один-единственный   элемент другого множества и наоборот, при этом различным элементам одного множества сопоставляются различные элементы другого.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]