
- •1. Понятие, определение понятий. Виды определений, требования к определению понятий.
- •3. Пересечение множеств, свойства пересечения, дистрибутивность пересечения относительно объединения (с доказательством).
- •4. Разность множеств. Дополнение к подмножеству. Дополнение к объединению и пересечению множеств (с доказательством).
- •5. Декартово произведение множеств, способы задания. Свойства декартова произведения (с доказательством). Число элементов декартова произведения конечных множеств. Понятие кортежа.
- •6. Бинарные соответствия между элементами множеств, способы задания. Отображение, как частный случай соответствий. Виды отображений. Взаимнооднозначные отображения. Равномощные множества.
- •7. Отношение, как частный случай соответствия. Свойства отношений, особенности графов.
- •8. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы. Отношение порядка. Строгий и нестрогий порядок. Линейный и частный порядок. Упорядоченные множества.
- •9. Понятие высказывания. Конъюнкция, дизъюнкция высказываний, свойства этих операций.
- •10. Отрицание высказываний. Законы двойного отрицания, противоречия, исключения третьего Законы де Моргана.
- •11. Импликация высказываний. Обратная, противоположная и обратная противоположной импликации. Эквиваленция высказываний.
- •12. Понятие предиката. Область определения и множество истинности предиката. Операции над предикатами, множества истинности конъюнкции, дизъюнкции, импликации предикатов.
- •13. Понятие функции. Способы задания, свойства функций (монотонность, четность, нечетность, периодичность). График функции.
- •14. Прямая и обратная пропорциональности.
- •15. Числовое выражение, значение числового выражения. Числовые равенства и неравенства, их свойства (с доказательством).
- •16. Выражение с переменной. Уравнение с одной переменной. Теоремы о равносильности уравнений (с доказательством).
- •17. Неравенства с одной переменной. Теоремы о равносильности неравенств (с доказательством).
- •Позиционные системы счисления.
- •19. Теоретико-множественный смысл суммы целых неотрицательных чисел. Законы сложения (с доказательством).
- •21. Теоретико-множественный смысл произведения целых неотрицательных чисел, законы умножения (с доказательством). Определение произведения через сумму.
- •22. Теоретико-множественный смысл частного целого неотрицательного числа и натурального. Определение частного через произведение. Правила деления суммы и произведения на число (с доказательством).
- •23. Понятие отношения делимости целых неотрицательных чисел. Теоремы о делимости суммы, разности и произведения целых неотрицательных чисел (с доказательством).
- •24. Понятие признака делимости. Признаки делимости на 2 и 5, 4 и 25 (с доказательством).
- •25. Понятие обыкновенной дроби. Основное свойство обыкновенных дробей, его использование. Положительные рациональные числа, действия над ними. Свойства сложения и умножения (с доказательством).
- •26. Понятие длины отрезка и ее измерение. Свойства длин отрезков. Стандартные единицы длины.
- •Лемма. Прямая de, параллельная какой-нибудь стороне ac треугольника abc, отсекает от него треугольник dbe, подобный данному.
- •28. Смысл натурального числа и действий над натуральными числами, полученных в результате измерения величин (на примере длин отрезков).
1. Понятие, определение понятий. Виды определений, требования к определению понятий.
Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны четыре прямых угла и др. Различают свойства существенные и несущественные.
Существенное свойство – свойство, без которого объект не может существовать.
Несущественное свойство – свойство, отсутствие которого не влияет на существование объекта.
Совокупность всех существенных свойств объекта называют содержанием понятия.
Когда говорят о математическом объекте, имеют в виду всю совокупность объектов, обозначаемых одним термином. Совокупность всех объектов, обозначаемая одним термином, составляет объем понятия.
Например, содержание понятия «квадрат» - это совокупность всех существенных свойств, которыми обладают квадраты, а в объем этого понятия входят квадраты различных размеров.
Итак, любое понятие характеризуется:
термином (название);
объемом (совокупность всех объектов, называемых этим термином);
содержанием (совокупность всех существенных свойств объектов, входящих в объем понятия).
Между объемом понятия и его содержанием существует связь: чем «больше» объем понятия, тем «меньше» его содержание, и наоборот. Объем понятия «треугольник» «больше», чем объем понятия «прямоугольный треугольник», так как все объекты второго понятия являются и объектами первого понятия. Содержание понятия «треугольник» «меньше», чем содержание понятия «прямоугольный треугольник», так как прямоугольный треугольник обладает всеми свойствами любого треугольника и еще другими свойствами, присущими только ему.
Для распознавания объекта необязательно проверять у него все существенные свойства, достаточно лишь некоторых. Этим пользуются, когда понятию дают определение.
Определение понятия – это логическая операция, которая, раскрывает содержание понятия либо устанавливает значение термина.
Определение понятия позволяет отличать определяемые объекты от других объектов. Так, например, определение понятия «прямоугольный треугольник» позволяет отличить его от других треугольников.
Различают явные и неявные определения.
Явные определения имеют форму равенства двух понятий. Одно из них называют определяемым, другое – определяющим.
Самый распространенный вид явных определений – это определение через род и видовое отличие. Приведенное выше определение квадрата относится к таким определениям. Действительно, понятие «прямоугольник», содержащееся в определяющем понятии, является ближайшим родовым понятием по отношению к понятию «квадрат», а свойство «иметь все равные стороны» позволяет из всех прямоугольников выделить один из видов – квадраты.
Основные правила явного определения.
1) Определение должно быть соразмерным, то есть объемы определяемого и определяющего понятий должны совпадать.
Если это правило нарушается, в определении возникают логические ошибки.
2) В определении (или их системе) не должно быть порочного круга. Круг возникает либо тогда, когда определяемое понятие характеризуется через него же, используются лишь иные слова, либо когда определяемое понятие включается в определяющее понятие в качестве его части. Круг в системе определений означает, что определяемое понятие определяется через определяющее, а определяющее через определяемое.
Неявные определения не имеют формы равенства двух понятий. Часто в таких определениях вместо определяющего содержится контекст (отрывок текста). Определения такого вида называют контекстуальными. К неявным относятся еще остенсивные определения, когда называют и показывают тот объект, термин для которого вводят.
2. Понятие множества, способы задания множеств. Отношения включения и равенства. Число подмножеств конечного множества. Объединение множеств, свойства объединения, дистрибутивность объединения относительно пересечения (с доказательством).
Множество – первичное понятие математики. Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит и не имеющее определения. Однако, существуют различные описания множества.
Например, Георг Кантор дал такое описание: Под «множеством» мы понимаем соединение в некое целое A определённых хорошо различимых предметов x нашего созерцания или нашего мышления (которые будут называться «элементами» множества A).
Другая формулировка принадлежит Бертрану Расселлу: «Множество суть совокупность различных элементов, мыслимая как единое целое».
Иногда множества определяется через аксиомы теории множеств.
Основоположником теории конечных и бесконечных множеств был Бернард Больцано. Он сформулировал некоторые её принципы.
Позднее, в 1872-1884 гг., Георг Кантор систематически изложил основы теории множеств, включая теорию точечных множеств и теорию трансфинитных чисел (кардинальных и порядковых). В этих работах он не только ввёл основные понятия теории множеств, но и обогатил математику рассуждениями нового типа, которые применил для доказательства теорем теории множеств, в частности впервые к бесконечным множествам. Поэтому общепризнано, что теорию множеств создал Георг Кантор.
Существуют два основных способа задания множеств: перечисление и описание его элементов. Перечисление состоит в получении полного списка элементов множества, а описание заключается в задании такого свойства, которым элементы данного множества обладают, а все остальные нет.
Конечные множества можно задавать обоими способами, причем выбор того или иного способа зависит от удобства задания и дальнейшей работы с множеством. Бесконечные множества можно задавать только с помощью описания. Георг Кантор определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Эти объекты назвал элементами множества. Множество
объектов, обладающих свойством A(x), обозначил. При этом, A(x) называется характеристическим свойством множества.
Эта концепция привела к парадоксам, в частности, к парадоксу Рассела.
Так как теория множеств, фактически, используется как основание и язык всех современных математических теорий в 1908 г. теория множеств была аксиоматизирована независимо Бертраном Расселем и Эрнстом Цермело. В дальнейшем многие исследователи пересматривали и изменяли обе системы, в основном сохранив их характер. До сих пор они всё ещё известны как теория типов Рассела и теория множеств Цермело. В настоящее время, теорию множеств Кантора принято называть наивной теорией множеств, а вновь построенную аксиоматической теорией множеств.
Конечным множеством называется такое множество, состоящее из конечного числа элементов. Примерами конечных множеств могут быть множество корней алгебраического уравнения n-й степени, множество букв русского алфавита, множество персонажей романа Михаила Булгакова «Мастер и Маргарита», множество атомов Солнечной системы. Причем неважно, известно число элементов множества или нет, главное, чтобы оно существовало.
В математике приходится сталкиваться и с другими – не конечными, или, как принято говорить, с бесконечными множествами. Множество называется бесконечным, если оно состоит из бесконечного числа элементов. Таковы, например, множество всех натуральных чисел, множество точек окружности, множество прямых, проходящих через точку плоскости и т.д.
К конечным множествам относится и множество, не содержащее элементов вообще. Такое множество называют пустым и обозначают Æ. Необходимость его введения вызвана тем, что, определяя множество с помощью некоторого условия, мы не всегда можем сказать заранее, содержит ли оно элементы или нет. Например, в 101 группе может не быть отличников и тогда А={а | а – отличник 101 группы}=Æ.
Без введения пустого множества мы не могли бы, скажем, говорить о множестве корней произвольного уравнения, не убедившись предварительно, что данное уравнение имеет хотя бы один корень. Существование этого понятия сокращает и упрощает формулировки многих теорем, облегчает введение новых понятий.
Если каждый элемент множества В является также и элементом множества А, то говорят, что множество В называется подмножеством множества А.
Объединением множеств А и В называется множество АВ, состоящее из элементов, принадлежащих хотя бы одному из множеств А и В. С=АВ={x| xA xB}.
Коммутативность: АВ=ВА. Ассоциативность: (АВ)С=А(ВС). Дистрибутивность:
А(ВС)=(АВ)(АС).