
- •3.Перенос тепла через однослойную и многослойную стенку.
- •4. Конвективный перенос теплоты. Уравнение Фурье-Киркгофа.
- •5.Механизм переноса тепла при теплоотдаче. Уравнение теплоотдачи.
- •6.Критерии теплового подобия. Общий вид критериальных уравнений.
- •8. Теплоотдача при конденсации пара
- •9. Теплоотдача при кипении жидкостей
- •11.Основное уравненение теплопередачи. Правило адитивности термических сопротивлений.
- •12. Понятие средней движущей силы процесса теплопередачи:
- •13.Классификация теплоносителей.Требования,предъявляемые ктеплоносителям.
- •14.Нагревающие агенты и методы их использования.
- •15.Охлаждающие агенты и методы их использования.
- •17.Определение коэф-та теплопередачи м-дом последовательных приближений при расчетах теплообменников.
- •18. Типы теплообменных аппаратов .Поверхностные теплообменники. Кожухотрубный, спиральный, пластинчатый…
- •21.Пластинчатые теплообменники
- •22.Оребреные теплообменники
- •23.Теплообменники смешения
- •24.Выпаривание
- •25.Материальный баланс выпаривания.
- •26.Температура кипения раствора и температурные потери
- •27.Движущая сила процесса.
- •28.Расход пара на выпаривание.Опред. Оптимального числа корпусов выпарной установки.
- •29.Классификация выпарных аппаратов и установок.
- •30.Порядок расчета выпарного аппарата.
- •31.Порядок расчета многокорпусной выпарной установки.
- •35. Вертикальные трубчатые пленочные аппараты
- •38 Схемы и работа многокорпусных выпарных установок.
- •39. Противоточная выпарная установка
- •5 5. Минимальный и оптимальный расход абсорбента
- •56.Скорость абсорбции. Интенсификация процесса при абсорбции трудно- и хорошорастворимых газов.
- •57.Классификация абсорберов
- •58. Порядок расчета абсорбера
- •59.Насадочные абсорберы
- •63. Провальные тарелки
- •64.Барботажные тарелки со сливными устройствами(ситчатая, колпачковая, клапанная)
- •65. Струйные тарелки
- •67.Требования к абсорбентам. Выбор абсорбента.
- •75. Порядок расчета ректификационной колонны(установки)
- •85.Камерная сушилка
- •86.Ленточные сушилки
- •89.Распылительные сушилки.
- •91.Порядок расчета сушилки
- •93.Конструкции адсорберов периодического и непрерывного действия
- •94. Экстракция. Основные понятия
23.Теплообменники смешения
В химических производствах обычно не требуется получать чистый конденсат водяного пара для его последующего использования. Поэтому широко распространены конденсаторы смешения, более простые по уст ройству и соответственно более дешевые, чем кожухотрубчатые теплообменники, применяемые в качестве поверхностных конденсаторов.
Теплообменники смешения(в них теплообмен происходит при непосредственном соприкосновении теплоносителей): барботеры, полочные, насадочные, распыливающие.
В
тех случаях, когда вместе с негревом
жидкость нужно перемешивать, исп так
называемые барботеры- трубы с небольшими
отверстиями.
Полочный барометрический конденсатор:
а —с сегментными полками; б — с коль* цевыми полками; I — цилиндрический корпус; 2 — сегментные полки; 3 — штуцер дли подвода пара; 4 — штуцер для подвода воды; 5 — штуцер для отвода воды и конденсата; 6 — барометрическаи труба; 7 —
О
дной
из самых распространенных конструкций
конденсаторов смешения является сухой
полочный
барометрический
конденсатор
(рис. VII1-29, а),
работающий
при противоточном движении охлаждающей
воды и пара. В цилиндрический корпус с
сегментными полками 2
снизу
через штуцер 3
поступает
пар. Вода подается через штуцер 4
(расположенный
на высоте 12—16 м
над
уровнем земли) и каскадно перетекает
по полкам, имеющим невысокие борта. При
соприкосновении с водой пар конденсируется.
Смесь
конденсата и воды сливается самотеком
через штуцер 5
в
барометрическую трубу 6
высотой
примерно 10 ми
далее
в барометрический ящик 7. Барометрические
труба и ящик играют роль гидравлического
затвора,
препятствующего прониканию наружного
воздуха в аппарат. Из барометрического
ящика вода удаляется в канализацию
через переливной штуцер Распыливающий:
24.Выпаривание
Выпариванием называется концентрирование растворов практически нелетучих или малолетучих веществ в жидких летучих растворителях.
Выпариванию подвергают растворы твердых веществ (водные растворы щелочей, солей и др.), а также высококипящие жидкости, обладающие при температуре выпаривания весьма малым давлением пара, — некоторые минеральные и органические кислоты, многоатомные спирты и др. Выпаривание иногда применяют также для выделения растворителя в чистом виде: при опреснении морской воды выпариванием образующийся из нее водяной пар конденсируют и воду используют для питьевых или технических целей.
При выпаривании обычно осуществляется частичное удаление растворителя из всего объема раствора при его температуре кипения. Поэтому выпаривание принципиально отличается от испарения, которое, как известно, происходит с поверхности раствора при любых температурах ниже температуры кипения. В ряде случаев выпаренный раствор подвергают последующей кристаллизации в выпарных аппаратах, специально приспособленных для этих целей.
Получение высококонцентрированных растворов, практически сухих и кристаллических продуктов облегчает и удешевляет их перевозку и хранение.
Тепло для выпаривания можно подводить любыми теплоносителями, применяемыми при нагревании. Однако в подавляющем большинстве случаев в качестве греющего агента при выпаривании используют водяной пар, который называют греющим, или первичным.
Первичным служит либо пар, получаемый из парогенератора, либо отработанный пар, или пар промежуточного отбора паровых турбин.
Пар, образующийся при выпаривании кипящего раствора, называется вторичным.
Тепло, необходимое для выпаривания раствора, обычно подводится через стенку, отделяющую теплоноситель от раствора. В некоторых производствах концентрирование растворов осуществляют при непосредственном соприкосновении выпариваемого раствора с топочными газами или другими газообразными теплоносителями.
Процессы выпаривания проводят под вакуумом, при повышенном и атмосферном давлениях. Выбор давления связан со свойствами выпариваемого раствора и возможностью использования тепла вторичного пара.