Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
PZ новый.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
851.09 Кб
Скачать

2.2. Методы измерений используемые в устройстве.

Простейший из тахометров, применяемый для быстрых оценочных измерений - механический тахометр . На валу тахометра, которому при контакте передается вращение исследуемого объекта, установлена муфта с прикрепленными к ней на шарнирах грузами. При вращении вала грузы расходятся и перемещают муфту вдоль вала. Положение муфты на валу определяется скоростью вращения. Муфта связана рычажками со стрелкой, движущейся по циферблату. Шкала прибора проградуирована в единицах об/мин. Очевидным недостатком такого тахометра является необходимость контакта вала тахометра с исследуемым вращающимся объектом, в результате чего изменяется скорость вращения самого объекта. Предпочтительнее поэтому пользоваться бесконтактными методами.

Главным минусом тахометров, требующих контакта с вращающейся деталью считается то, то такие тахометры оказывают воздействие на деталь, что приводит к погрешности измерений. Для данного устройства решено использовать три бесконтактных метода измерения:

  • Стробоскопический метод.

  • Импульсный метод.

    • Способ использующий фотопрерыватель

    • Способ, использующий отраженный ИК-луч.

Мы подробно остановимся на этих методах:

Стробоскопический метод.

В старых фильмах наблюдался следующий эффект: колеса локомотива или повозки медленно вращаются назад. Это происходит от того что фильмы снимались с частотой 24 кадра в секунду, и колеса вращающиеся быстрее чем 24 оборота в секунду испытывали на себе стробоскопический эффект. Первоначально, из-за этого эффекта колеса в изображении замедлялись, и когда колесо набирало скорость которая совпадала со скоростью съемки — оно визуально останавливалось на пленке. Если мы знаем число спиц на колесе, мы можем рассчитать скорость вращения при которой колесо «остановится». Например, если колесо имеет 8 спиц, тогда его скорость эквивалентна 1440 (количество кадров в минуте) деленным на 8, или 180 оборотов в минуту. Точно так же, скорость вращения машины может быть определена с помощью настройки частоты импульсов стробоскопа, при которой движущаяся часть машины «остановится».

Так же необходимо принять во внимание количество крыльчаток на пропеллере или вентиляторе или количество деталей, на которые можно опираться для отметки на изделии. Например, если на пропеллере есть 2 лопасти, то он «остановится» когда частота стробирования будет в два раза выше скорости вращения. Решение данной проблемы — нанесение отметки на одну из лопастей пропеллера. Либо внесение поправочного коэффицента, о котором будет рассказано ниже.

Различают два стробоскопических (стробос - вихрь, скопео - смотрю) эффекта. Первый из них состоит в том, что быстрая смена отдельных фаз движения тела воспринимается глазом как непрерывное движение. Это связано с тем, что клетки сетчатой оболочки глаза сохраняют зрительный образ в течение примерно 0,1с. после исчезновения зримого объекта. И, если время между появлениями отдельных изображений меньше 0,1с, образы сливаются, и возникает иллюзия непрерывности движения. На этом эффекте основаны кинематограф и телевидение.

Второй стробоскопический эффект состоит в том, что при определенных условиях возникает иллюзия не движения, а, наоборот, покоя предмета, который на самом деле движется.

Если какой-нибудь объект совершает периодическое движение (колеблется или вращается), то при освещении его прерывистыми световыми вспышками, следующими через равные промежутки времени, предмет будет казаться неподвижным, если частота вспышек в точности равна частоте колебаний вращения. Объясняется это тем, что глаз будет отмечать положение тела в момент световой вспышки и сохранят этот зрительный образ до следующей вспышки, которая при равных частотах вспышек и вращения застанет предмет на том же месте. Когда частота вспышек в целое число раз больше частоты вращения картина тоже будет неподвижной, но теперь будет видно несколько “экземпляров” предмета. Если отношение частоты вспышек к частоте оборотов равно k, то за каждый оборот будет происходить k вспышек, которые застанут предмет в разных положениях, отличающихся на угол 2/k. Равенство всех углов означает, что тело вращается с постоянной угловой скорость.

Если частота вспышек не в точности равна или не в точности кратна частоте вращения тела, то оно будет казаться медленно вращающимся в ту, или другую сторону в зависимости от соотношения частот. Если частота вспышек намного больше частоты вращения или ей величины, каждая последующая вспышка будет освещать предмет в положении, когда он еще не сделал полного оборота, и он будет казаться вращающимся в сторону, противоположному реальному вращению тела. Наоборот, если частота вспышек несколько меньше частоты вращения тела, кажущееся движение будет совпадать с направлением истинным. Такие стробоскопические иллюзии иногда наблюдаются в кино, когда, например, частота следования кинокадров больше или меньше частоты вращения колес.

Стробоскопический метод измерения частоты вращения обладает одним существенным недостатком, заключающийся в том, что одну и ту неподвижную картину можно наблюдать при различных значениях k. Напомним, что k есть отношение числа вспышек к числу оборотов предмета. Эта величина может быть как больше, так и меньше единицы. Если число вспышек больше числа оборотов, то k>1. Наоборот, если число вспышек меньше числа оборотов, то k<1.

Пусть наблюдается один “экземпляр” предмета. Это возможно, если за время, равное периоду следования вспышек, предмет повернулся на угол 2, 4, 6 и т.д. (в общем случае этот угол равен 2m, где m=1,2,3,) т.е. совершил 1,2,3, оборотов (в общем случае m оборотов). Другими словами, это возможно при k=1,1/2,1/3,  (в общем случае k=1/m). Итак, если при освещении вращающегося объекта импульсным осветителем наблюдается один “экземпляр” предмета, то вывод, который из этого можно сделать заключается лишь в том, что число оборот или равно числу вспышек или в целое число раз меньше числа вспышек.

Такая же неоднозначность при наблюдении двух “экземпляров” предмета. Аналогично можно показать, что такая ситуация возможна, если k=2,2/3,2/5 и т.д. Нетрудно показать, что неоднозначность определения числа оборотов стробоскопическим методом существует при наблюдении любой неподвижной картинки.

Я

Рисунок 7 Использование стробоскопа при измерениях скорости

вными недостатками данного метода является неоднозначность измерений, использование такого метода сопряжено не только с простотой использования, но и необходимостью четко понимать принцип действия стробоскопического метода.

Фотопрерыватель.

Р

Рисунок 8 Использование фотопрерывателя для измерения количества оборотов.

исунок 8 демонстрирует другой способ измерения скорости. В этом случае, сигнал запуска поступает в тахометр от сенсора, подключенного к машине. Это может быть оптический датчик, либо датчик использующий эффект Холла, который взаимодействует с вращающейся деталью или магнитом. Когда деталь вращается, датчик посылает импульсы в тахометр, и тахометр вычисляет количество оборотов в минуту и отображает это количество на экране.

Недостатком данного способа можно считать необходимость нанесения на вал диска с отверстиями-метками, так как это не всегда представляется возможным. Кроме того, диск оказывает воздействие на вал, в некоторых случаях весьма серьезное. Например, если диск имеет всего одну метку, может возникнуть биение вала, засчет разницы масс половин диска.

Рисунок 9 Пример разметки диска фотопрерывателя.

Отраженный ИК луч.

Т ретий способ измерения скорости вращения описан на рисунке 11. Это бесконтактный метод, основанный на отражении света от маркера, нанесенного на вращающуюся часть машины.

Рисунок 10 Использование датчика ИК излучения при измерениях радиальной скорости.

В некоторых случаях, отражающие полосы должны быть прикреплены к машине, чтобы получить как можно больше отраженного света во время вращения машины. В случае работы с пропеллером или лопастями вентилятора, изменение яркости будет достаточным для того чтобы не прибегать к дополнительным отражающим поверхностям.

В этом способе измерения инфракрасный луч направляется на вращающуюся деталь, а инфракрасный фотодиод улавливает отраженные световые волны (скорее, перепады от состояния «без отражения» и состояния «с отражением»). Использование ИК диапазона позволяет обойтись без дополнительных источников света для улучшения чтения.

Инфракрасное излучение — не видимое глазом электромагнитное излучение с длиной волны от 1—2 мм до 0,74 мкм; наблюдается гл. обр. при работе у горячих печей расплавленным металлом или стеклом, а также в технологических процессах с применением электрической дуги.

И. и. — тепловые лучи охватывают область спектра оптического излучения в пределах от 0,76 до 100 мкм. По физической природе инфракрасные (ИК) лучи являются потоком материальных частиц, обладающих волновыми и квантовыми свойствами. Они представляют собой периодические электромагнитные колебания и в то же время являются потоками квантовых фотонов. Источником ИК-лучей служит любое нагретое тело. Различают естественные и искусственные источники. Летом в условиях реальной атмосферы на поверхности Земли наибольшая измеренная величина солнечной радиации в околополуденные часы составляет 1049 Вт/м2.

Недостатком данного способа является необходимость взаимодействия с валом, что в редких случаях может быть недопустимым или невозможным. Однако высокая точность измерений и «бесконтактность» данного способа полностью нивелируют этот минус.