
- •1.Введение
- •1.1Группы материалов (сталей) склонных к образованию дефектов при сварке, после и в процессе эксплуатации
- •1.2 Классификация видов термической обработки металлов и сплавов
- •2)Отжиг.
- •2.1.Отжиг первого рода
- •2.1.1.Отжиг, уменьшающий напряжения.
- •2.1.2.Гомогенизационный отжиг.
- •2.2. Отжиг второго рода
- •2.2.1.Аустенитное превращение
- •2.2.2.Структурная перекристаллизация аустенита и размер аустенитного зерна.
- •2.2.3.Перлитное превращение.
- •2.2.4.Технология отжига второго рода.
- •3. Закалка без полиморфного превращения
- •4. Старение
- •5. Закалка на мартенсит
- •5.1.Назначение температурынагрева под закалку.
- •5.2.Охлаждение при закалке стали.
- •5.3.Охлаждающие среды.
- •5.4.Прокаливаемость стали.
- •5.5.Способы закалки стали.
- •5.6.Закалка с обработкой холодом.
- •5.7.Закалка с подстуживанием.
- •5.8.Прерывистая закалка.
- •5.9.Закалка с самоотпуском.
- •5.10.Ступенчатая закалка.
- •5.11.Изотермическая закалка.
- •5.12.Способыповерхностной закалки.
- •5.13.Индукционная закалка токами высокой частоты.
- •5.14.Лазерная поверхностная обработка.
- •6. Отпуск закаленной стали
- •7. Деформационно-термическая обработка
- •7.1.Механико-термическая обработка.
- •7.2.Термомеханическая обработка.
- •8 Химико-термическая обработка
- •8.1.Основные сведения
- •8.2.Цементация стали.
- •8.3.Азотирование стали.
- •8.4.Методысовместного насыщения азотоми углеродом.
- •8.5.Насыщениеметаллами.
8.5.Насыщениеметаллами.
Металлами можно насыщать стали и чугуны, алюминиевые и медные сплавы, сплавы на основе титана и никеля, молибден и вольфрам, а также многие другие металлические или керамические материалы.
К настоящему времени созданы следующие технологически различающиеся группы процессов, способных обеспечить создание диффузионных покрытий металлами: покрытия в порошковых твердых смесях; диффузионное насыщение из газовой фазыциркуляционным методом; покрытия погружением в металлические расплавы; покрытия методом диффузионного отжига изделий с ранее нанесенной различными методами тонкой пленкой насыщающего вещества; диффузионное удаление из поверхности одного из компонентов сплава путем нагрева его в вакууме либо иной контролируемой среде.
Наибольшее распространение имеют методы насыщения в порошковых твердых смесях. Для их проведения насыщаемые изделия упаковывают в порошковые смеси в герметичных стальных ящиках аналогично цементации.
В состав порошковых смесей должнывходить три составные части: активное металлическое вещество покрытия в виде порошка, например, при хромировании стали может использоваться порошок металлического хрома или феррохром; нейтральный порошок, предотвращающий спекание смеси, например, обожженная глина (окись алюминия); галогенид аммония (чаще всего хлористый аммоний), разлразлагающийся при температуре насыщения с выделением большого количества образующихся газов, в том числе газообразного хлора, который взаимодействуюет с насыщающим порошковым металлом, образуя химически активное легко разлагающееся вещество.
Образующиеся таким образом хлориды насыщающего металла переносятся в газовой среде к поверхности насыщаемых изделий, где они разлагаются как на катализаторе, в результате чего высвобождающийся атом металла адсорбируется поверхностью детали, а оставшийся хлор продолжает двигаться в газообразной среде ящика, участвуя в новых актах взаимодействия с новыми атомами насыщающего металла порошковой среды. В качестве примеров насыщения металлами рассмотрим процессы алитирования, силицирования и диффузионного хромирования.
Алитирование применяется с целью повышения стойкости к атмосферной коррозии, особенно при повышенных температурах, и, следовательно, для повышения жаростойкости и окалиностойкости стали, меди и медных сплавов.
Для алитирования стали используют порошкообразный ферроалюминий - 49%, окись алюминия - 49% и хлористый аммоний - 2%. Процесс ведут при температуре 900 – 1000 °С в течение 4 – 16 ч с медленным охлаждением (с печью). Образующийся слой глубиной от 0,15 до 0,50 мм -это твердый раствор алюминия вжелезе, содержание которого может достигать 50%.
Силицирование - процесс насыщения поверхности стали кремнием. Силицирование применяется с целью повышения кислотостойкости поверхности, например, стальных емкостей для перевозки концентрированных кислот, за исключением плавиковой. В состав порошковой твердой среды вводят 60% ферросилиция, 39% глинозема (окиси алюминия) и 1% хлористого аммония.
Температура 950 -1000 °С, выдержка от 2 до 10 ч. Глубина формирующегося слоя от 0,3 до 1 мм. Слой содержит не травящийся кремниевый феррит (твердый раствор кремния в железе с содержанием кремния до 14%). В таком состоянии силицированный слой очень хрупкий, хотя и обладает высокой устойчивостью к коррозии в морской воде, а также стоек в азотной, серной и соляной кислотах. При невысокой твердости, этот слой неплохо сопротивляется истиранию, особенно после проварки деталей в масле при температуре 170 - 200 °С.
Диффузионное хромирование ведут для повышения поверхностной твердости, износостойкости деталей из стали и чугуна при одновременном увеличении коррозионной стойкости и кислотостойкости поверхности. Для хромирования используют металлический порошок хрома или феррохрома в количестве 50% от состава смеси, 47% окиси алюминия и 3% хлористого аммония. Температура 1050 – 1150 °С с выдержкой 12 – 15 ч. Глубина слоя от 0,02 до 0,12 мм представляет собой сложные карбиды хрома, на образование которых расходуется углерод, входящий в состав насыщаемой стали или чугуна.
Твердость карбидного слоя выше 13000 МПа, что обеспечивает высокую износостойкость поверхности детали.
Список используемых источников.
1. Новиков И.И. Теория термической обработки металлов - М.: Метал-
лургия, 1986. – 480 с.
2. Биронт В.С. Теория термической обработки. Комбинированные мето-
ды: Учебное пособие / ГАЦМиЗ. Красноярск: 2000. – 140 с.
3. Биронт В.С. Теория термической обработки. Комбинированные мето-
ды: Учебное пособие / СФУ: ИЦМиЗ. Красноярск: 2007. – 138 с.
4. Биронт В.С. Основы теории и технологии термоциклической обработки
металлов и сплавов: Учебное пособие. – Красноярск: Изд-во КПИ, 1984.- 76 с.