
- •I. Электростатика
- •II. Постоянный ток
- •VI. Электромагнетизм
- •I. Электростатика
- •1)Закон Кулона.
- •2)Электрическая поле, напряжённость электрического поля.
- •3)Теорема Гаусса-Остроградского.
- •4)Напряженность электрического поля сферы, равномерно заряженной по поверхности.
- •5)Напряженность электрического поля сферы, равномерно заряженной по объёму.
- •6)Поле бесконечно длинной заряженной нити.
- •7)Поле бесконечно большой равномерно заряженной плоскости. Две бесконечно большие равномерно заряженные плоскости.
- •8)Работа перемещения заряда в электрическом поле. Потенциал электрического поля.
- •9)Взаимосвязь потенциала и напряженности электрического поля.
- •11)Электроёмкость проводников, плоский конденсатор, соединение конденсаторов.
- •13)Диэлектрики в электрическом поле. Поляризация диэлектриков.
- •II. Постоянный ток
- •1)Основные понятия и законы постоянного тока.
- •2)Закон Ома в дифференциальной форме.
- •3)Закон Ома для полной цепи. Электродвижущая сила.
- •4)Разветвленные цепи. Правило Киргофа.
- •5)Элементы зонной теории твердого тела.
- •6)Классическая электронная теория проводимости металлов. Закон Ома.
- •7)Сверхпроводимость.
- •8)Полупроводники. Собственная и примесная проводимость.
- •10)Контактные явления. Контактная разность потенциалов. Закон Вольты.
- •11)Термоэлектродвижущая сила. Закон Пельтье.
- •12)Термоэлектронная эмиссия.
- •13)Разряд в газах. Несамостоятельный разряд.
- •14)Самостоятельный электрический разряд в газе.
- •1)Магнитное поле.
- •2)Закон Био-Савара-Лапласа.
- •5)Поле бесконечно длинного прямого тока.
- •7)Магнитная индукция соленоида.
- •8)Закон Ампера.
- •9)Взаимодействие параллельных токов.
- •10)Сила Лоренца.
- •11)Циклотрон.
- •12)Контур с током в магнитном поле.
- •13)Поток магнитной индукции. (Закон Ома магнитной цепи)
- •14)Работа перемещения проводника с током в магнитном поле.
- •15)Явление электромагнитной индукции.
- •16)Метод измерения магнитной индукции.
- •17)Токи Фуко.
- •18)Самоиндукция. Взаимоиндукция.
- •19)Энергия магнитного поля.
- •20)Магнитные свойства вещества. Основное соотношение физики магнетиков.
- •21)Классификация магнетиков. Диамагнетики.
- •22)Парамагнетики.
- •23)Ферромагнетики.
- •25)Затухающие электромагнитные колебания.
- •26)Вынужденные электромагнитные колебания. Резонанс.
- •27)Ток смещение. Уравнение Максвелла. Электромагнитное поле.
13)Поток магнитной индукции. (Закон Ома магнитной цепи)
Ф = Iw/RM. Эта формула выражает закон Ома для магнитной цепи. Магнитное сопротивление RM определяют в зависимости от длины силовых линий l (м), площади поперечного сечения силового потока S (м2) и абсолютной магнитной проницаемости µа(Вб/А•м):
Магни́тный
пото́к — поток
как
интеграл вектора
магнитной
индукции
через
конечную поверхность
.
Определяется через интеграл по поверхности
при этом векторный элемент площади поверхности определяется как
где
—
единичный
вектор, нормальный
к поверхности.
Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:
где α — угол между вектором магнитной индукции и нормалью к плоскости площади.
Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:
14)Работа перемещения проводника с током в магнитном поле.
На
проводник с током в магнитном поле
действуют силы, которые определяются
с помощью закона Ампера. Если проводник
не закреплен (например, одна из сторон
контура сделана в виде подвижной
перемычки,), то под действием силы Ампера
он в магнитном поле будет перемещаться.
Значит, магнитное поле совершает работу
по перемещению проводника с током.
Работа, которая совершается магнитным
полем, равна
так
как ldx=dS
— площадь, которую пересекает проводник
при его перемещении в магнитном поле,
BdS=dФ — поток вектора магнитной индукции,
который пронизывает эту площадь.
Значит,
т.
е. работа по перемещению проводника с
током в магнитном поле равна произведению
силы тока на магнитный поток, пересеченный
движущимся проводником. Данная формула
справедлива и для произвольного
направления вектора В.
15)Явление электромагнитной индукции.
Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Согласно закону электромагнитной индукции Фарадея (в СИ):
где
— электродвижущая
сила,
действующая вдоль произвольно выбранного
контура,
— магнитный
поток через
поверхность, натянутую на этот контур.
Знак «минус» в формуле отражает правило
Ленца,
названное так по имени русского
физика Э. Х. Ленца:
Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:
где
— электродвижущая сила,
—
число
витков,
— магнитный поток через один виток,
— потокосцепление катушки.
16)Метод измерения магнитной индукции.
Магни́тная
инду́кция
—
векторная
величина, являющаяся силовой характеристикой
магнитного
поля
(его действия на заряженные частицы) в
данной точке пространства. Определяет,
с какой силой
магнитное
поле действует на заряд
,
движущийся со скоростью
.
Более
конкретно,
—
это такой вектор, что сила
Лоренца
,
действующая со стороны магнитного
поля[1]
на заряд
,
движущийся со скоростью
,
равна
где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).
Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.
Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.