
- •Предыстория экологии: древнейший и античный периоды. Аристотель. Теофраст.
- •Средние века. Начало научной экологии и биогеографии
- •Научное время: Труды к. Линея, а. Фон Гумбольда, к.Ф. Рулье, н. А. Северцова.
- •Роль Дарвина в развитии экологии.
- •Формирование экологического знания и определение науки э. Геккелем.
- •Формирование современной экологии. Биоэкология как параметр экологии
- •Труды ч. Адамса, е. Варминга, геобатаника а. Гризенбаха, работы г. Ф. Морозова.
- •7.Труды ч. Адамса, е. Варминга, геоботаника а. Гризебаха, работы г.Ф. Морозова.
- •9.Экология в России и бывшем ссср. А.П. Богданов и Российское общество акклиматизации животных и растений. Ландшафтно-экологические идеи в.В. Докучаева и л.С. Берга.
- •10 Г.А.Кожевников и развитие теории заповедания.
- •В.Н. Сукачев, д.Н. Кашкаров и в.В. Станчинский: их роль в развитии предвоенной экологии.
- •«Мичуринская наука» и экология.
- •Лысенковский разгром экологии в 1933-1948 годах.
- •14.Реабилитация экологии в ссср после 1971 года.
- •15. Возникновение палеоэкологии и роль в этом в.О. Ковалевского, л. Долло и других западных палеонтологов.
- •16.Понятие о биоценозах к. Мёбиуса. Понятие об экосистемах а.Г. Тенсли.
- •17. X. Берроуз и его доклад «География как экология человека».
- •18. Э. Зюсс - автор термина «биосфера». Учение в.И. Вернадского о биосфере.
- •19. Э. Леруа - автор термина «ноосфера».
- •20. Экологический алармизм в книгах р. Карсона, ж. Дорста, д.Л., Арманда.
- •21.Возникновение широкого цикла экологического знания. Ю. Одум, р. Рик- лефс, ф. Рамад, н.Ф. Реймерс: их роль в развитии современной экологии.
- •22. Экология систематических групп органического мира.
- •23.Эндоэкология.
- •24.Экзоэкология.
- •26.Аэроэкология, гидроэкология, литоэкология.
- •27. Экология Крайнего Севера
- •28. Экология тундр и лесотундр.
- •29. Экосистема болота
- •30.Экология лесов, лесостепей и степей.
- •31 Экология полупустынь и пустынь.
- •33. Влажнотропические леса
- •34. Экосистемы Мирового океана
- •36. Хроноэкология
- •39. Прикладная экология: основные разделы, определения и понятия
- •40. Экология культуры и экология духа.
- •41 Этноэкология и экологическая демография.
- •42 Понятие системы, подсистемы и их элементов
- •43 Системы «потребитель - корм» и «человек - среда».
- •44 Общая теория систем: био -, гео - и экосистемы
- •45.Понятие об экосистеме. Учение об экосистемах
- •46.Биогеоценоз как элементарная экосистема. Черты отличия экосистем и био-геоценозов
- •47.Экологические компоненты и элементы
- •48.Типы экосистем и уровни их организации.
- •49.Биосфера как глобальная экосистема
- •50.Общесистемные законы экологии.
- •51.Роль моделирования в экологических исследованиях. Экологические модели.
- •52.Разновидности систем. Особенности сложных систем.
- •53.Системный подход как основной метод геоэкологии. Проявления системного подхода в экологии и географии.
- •56. Простые и сложные свойства экосистем
- •57. Основные принципы системологии.
- •58. Объяснение и прогнозирование как методы экологии.
- •59. Экологические законы внутреннего развития систем.
- •60. Понятие и виды моделей.
- •61. Сущность метода моделирования. Основные требования, предъявляемые к моделям.
- •62. Глобальное моделирование. Примеры глобальных моделей.
- •63. Понятие и виды прогнозов. Сущность и этапы прогнозирования.
- •70 Природные и природно-антропогенные системы: черты сходства и различия
- •71 Техногенные системы: определение и классификация. Примеры природно- антропогенных и техногенных систем.
- •72 Устойчивость искусственных экосистем.
- •74. Экологические законы отношений «система-среда».
- •75. Понятие об имитационном моделировании
- •76 Методологические и технологические проблемы имитационного моделирования
61. Сущность метода моделирования. Основные требования, предъявляемые к моделям.
Моделирование (лат. modulus - мера, образец) - исследование каких-либо явлений, процессов или систем объектов путем построения и изучения их моделей, использование моделей для определения и уточнения характеристик и рационализации построения вновь конструируемых объектов. В научных исследованиях моделирование стало применяться ещё в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, физику химию, биологию, экологию, общественные науки. Методология моделирования долгое время развивалась независимо отдельными пауками. Отсутствовала единая система понятий и терминология. Лишь в последнее время постепенно стала осознаваться роль моделирования как универсального метода научного познания.
Метод моделирования - универсальный метод. Он применяется в научных исследованиях практически во всех пауках. Метод моделирования в геоэкологии - метод исследования строения, функционирования, динамики и развития геокомпонентов и геоэкосистем, процессов и взаимосвязей внутри них и между ними с помощью модели. Под моделью понимается образ (копия) реально существующих объектов, процессов и явлений. Она всегда создастся па основе сходства с объектом-аналогом. Модель - это некий новый объект, который отражает главные черты и существенные особенности изучаемого объекта, явления или процесса. Можно сказать модель - это упрощенное представление о реальном объекте, процессе или явлении. Никакая модель не может заменить сам объект исследования.
Модель выступает в качестве своеобразного инструмента познания, который исследователь ставит между собой и объектом и с помощью которою изучает интересующий его объект. Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно или же это исследование требует много времени и средств
Процесс построения модели называется моделированием. Основные задачи моделирования: а) облегчить процесс познания; б) сделать познание менее трудоемким; в) сделать объект познания более наглядным i доступным.
Технология моделирования требует от исследователя умения ставить проблемы и задачи, прогнозировать результаты исследования, проводить разумные оценки, выделять главные и второстепенные факторы для построения моделей, выбирать аналогии и математические формулировки, решать задачи с использованием компьютерных систем, проводить анализ компьютерных экспериментов.
Навыки моделирования очень важны человеку в жизни. Они помогут разумно планировать свой распорядок дня, учебу, труб, выбирать оптимальные варианты при наличии выбора, разрешать удачно жизненные ситуации.
Требования к моделям:
1. Согласованность с культурной средой. Для того чтобы модель отвечала своему назначению, необходимо, чтобы существовали условия, обеспечивающие ее функционирование. Не только модель должна приспосабливаться к среде, но и среда к модели.
2. Конечность модели. Мир, частью которого мы являемся, бесконечен, как бесконечен и любой объект, не только в пространстве и времени, но и в своих связях с другими объектами, формах бытия, свойствах и тенденциях развития. Конечность характеризует любые конкретные явления и объекты, которые существуют в определенных пространственных и временных границах. Конечное – это форма проявления бесконечного, которое в свою очередь складывается из бесчисленного множества конечных объектов и явлений. Таким образом, в практике познания мира мы сталкиваемся с противоречием – необходимо познавать бесконечный мир конечными средствами. Способ преодоления этого противоречия состоит в построении моделей. Модель конечна, так как она отображает оригинал лишь в конечном числе отношений и ресурсы моделирования конечны.
3. Упрощенность модели. Упрощенность характеризует качественные различия модели и оригинала. Причиной вынужденного упрощения модели является необходимость оперирования с ней
Например: за неимением методов решения нелинейного уравнения мы линеаризуем его; в других случаях искусственно уменьшаем размерность, заменяем переменные величины постоянными, случайные – детерминированными и т.д.
4 Приближенность модели. Приближенность модели может быть очень высокой, например, уточнения числа пи производилась методами, указанными еще Архимедом: окружность заменялась многоугольником с большим числом сторон. В 1579 г. французский математик Ф.Виет вычислил пи с 9 знаками В наши дни с помощью ЭВМ число пи вычислено с точностью до миллиона знаков.
5Адекватность модели. Модель, с помощью которой успешно достигается поставленная цель моделирования, будем называть адекватной этой цели. Модель адекватна моделируемому объекту, если полученные на ее основе результаты и выводы соответствуют реальному положению дел и неадекватна в противном случае. Основными причинами неадекватности обычно являются следующие:а) для построения модели использовалась ошибочная теория или система идей,б) в модели не учтена существенная информация.