Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_po_Ekaterine_Ivanovne (2).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.23 Mб
Скачать

51.Роль моделирования в экологических исследованиях. Экологические модели.

Первыми экосистемами, которые изучались с помощью количественных методов, были системы «хищник – жертва». Американец А. Лотка в 1925 году и итальянец В. Вольтерра в 1926 году создали математические модели роста отдельной популяции и динамики популяций, связанных отношениями конкуренции и хищничества. Исследование систем «хищник – жертва» показало, что типичной для популяции жертв эволюцией является увеличение рождаемости, а для популяции хищников – совершенствование способов ловли жертвы.

В дальнейшем метод математического моделирования применялся в экологии все шире, что обусловливалось его большими потенциальными возможностями. Моделирование дает предварительное объяснение и предсказание поведения экосистем в условиях, когда теоретический уровень исследований природной среды недостаточно высок. В этом аспекте моделирование всегда будет дополнять теоретические построения, так как разрыв между практическим воздействием на природу и теоретическим осмыслением последствий такого воздействия сохраняется, и все качественно новые варианты перестройки биосферы обязательно должны моделироваться.

Модель как средство преобразования характеризуется не только соответствием с объектом, который должен быть преобразован. Она сообразуется с планирующей деятельностью человека, а следовательно, с теми орудиями труда, которыми общество обладает. В модели образуется единство свойств, которые подобны свойствам прототипа, и свойств, выражающих целевую установку человека.

Например, можно использовать в качестве натурной модели при исследовании участка под строительство сооружения участок, на котором уже было осуществлено строительство. Отсутствие подобия модели (в ее окончательной стадии) прототипу не является препятствием для моделирования. Результаты модельной деятельности на каждом отрезке моделирования сопоставляются с результатами оперирования оригиналом при учете конечной цели преобразования прототипа.

В зависимости от цели моделирования, можно выделить два типа моделей: дескриптивные модели и модели поведения (Страшкраба, Гнаук, 1989).

Дескриптивная модель позволяет получить информацию о взаимосвязях между наиболее важными переменными экосистемы. Реализуется такой тип модели методами стохастического моделирования, основанного на инструментах теории вероятностей и математической статистики. Разделяют статические методы, не учитывающие время в качестве переменной (простая и множественная линейная и нелинейная корреляция и регрессия; дисперсионный, дискриминантный и факторный виды анализа, методы оценки параметров), и динамические методы, которые учитывают временную переменную (анализ Фурье, корреляционный и спектральный анализ, весовые и передаточные функции). В отечественной литературе подобные модели, представляющие собой регрессионные и другие эмпирически установленные количественные зависимости, не претендующие на раскрытие механизма описываемого процесса, получили название описательных (Ризниченко, Рубин, 1993).

Модели поведения описывают системы во время переходного периода от одного состояния к другому (Страшкраба, Гнаук, 1989). Для осуществления этой категории моделей изучают: 1) структуру сигналов на входе и выходе системы; 2) реакцию системы на особые проверочные сигналы; 3) внутреннюю структуру системы. Последний пункт реализуется аналитическим моделированием, в основе которого лежат дифференциальные уравнения, описывающие причинно-следственные связи в экосистеме. Первым этапом аналитического моделирования является формирование концепции модели и составление уравнений, описывающих поведение системы, при этом происходит упрощение реальности, которое, однако, не влияет на наиболее существенные свойства реальной системы. Затем идет параметризация, т.е. определение количественных значений параметров. Осуществление этой задачи возможно тремя способами: 1) получением предварительных оценок значений параметров на основе наблюдений; 2) нахождением комбинаций параметров, отвечающих моделируемой ситуации, базирующимся на методах оптимизации параметров; 3) оценкой роли параметров модели с помощью анализа чувствительности, целью которого является определение того, как модель реагирует на изменение значений параметров и, как следствие, того, насколько правильно оценены параметры. Следующий шаг аналитического моделирования – имитация, т.е. получение с помощью ЭВМ решения модельных уравнений при фиксированных значениях параметров и начальных условиях. И, наконец, испытание модели или, другими словами, сравнение ее выходных параметров с выходными данными системы. Различают два способа испытания: 1) проверка (качественное или количественное сравнение данных, полученных в результате моделирования, с действительными значениями); 2) проверка значимости модели (проведение экспериментов для изучения поведения модели и системы с целью обнаружения их сходства, а также для сравнения тенденций поведения модели и системы). Выделяется также адаптивное моделирование, при котором происходит автоматическая адаптация модели к системе с помощью ЭВМ.

Классификация математических моделей биологических продукционных процессов была предложена в книге Г.Ю.Ризниченко и А.Б.Рубина (1993). Различают три класса: 1) описательные модели; 2) качественные модели (выясняющие динамический механизм изучаемого процесса, способные воспроизвести наблюдаемые динамические эффекты в поведении системы); 3) имитационные модели конкретных сложных систем, учитывающие всю имеющуюся информацию об объекте (и позволяющие прогнозировать поведение систем или решать оптимизационные задачи их эксплуатации). Особое значение придается именно последнему классу моделей, поскольку он оказывается полезным для практических целей. Кратко можно выделить следующие основные этапы построения имитационной модели (Ризниченко, Рубин, 1993):

формулирование основных интересующих исследователя вопросов о поведении сложной системы, задание вектора состояния системы и системного времени;

декомпозиция системы на отдельные блоки, связанные, но относительно независимые; определение компонент вектора состояния каждого блока, которые должны преобразовываться в процессе функционирования;

формулирование законов и гипотез, определяющих поведение отдельных блоков и их взаимосвязь; разработка программ, соответствующих отдельным блокам;

верификация каждого блока при “замороженных” или линеаризованных информационных связях с другими блоками;

объединение разработанных блоков, при этом исследуются различные схемы их взаимодействия;

верификация имитационной модели в целом и проверка ее адекватности;

планирование и проведение экспериментов с моделью, статистическая обработка результатов и пополнение информационного фонда для дальнейшей работы с моделью.

Однако практика показала, что попытки детального описания многокомпонентных систем приводит к проблеме “проклятия размерности”, когда практически невозможно корректное построение и идентификация математической модели из-за использования чрезмерно большого количества неточно определенных параметров по сравнению с имеющейся экспериментальной информацией (Алексеев и др., 1992). В такой ситуации необходимо упрощение модели, например, за счет отбрасывания блоков или функциональных связей с второстепенным значением, выделения наиболее важных составляющих, определения быстрых и медленных переменных и замены части из них постоянными величинами или параметрическими зависимостями.